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Summary

The emergence of electric vehicles comes along with the global trend towards microgrids which are a key
element of a more decentralized and more digitized energy system. This coincidence generates great
opportunities for both technologies. On the one hand, microgrids with their locally produced renewable
energy enable a sustainable and cheap way to recharge the electric vehicles’ batteries. And on the other hand,
electric vehicles can provide additional flexibility to the microgrid thanks to their energy storage. For
instance, the charging process can be shifted to hours where a roof-top photovoltaic system produces “free”

energy, or to off-peak hours where energy from the grid is cheap.

Most of today’s state-of-the art microgrid energy management systems rely on Model Predictive Control,
where at each control instant forecasts of external inputs (e.g. renewable production, variable energy price,...)
are taken into account to find the optimal control strategy. For an efficient integration of electric vehicles into
such energy management systems, the availability of forecasts about the vehicles’ arrival- and departure times
and their energy needs is crucial. In this work, the economic value of electric vehicle forecast information is
analysed in the context of a microgrid equipped with a photovoltaic system, a stationary battery and an
electric vehicle charging station. Full year simulation results show that energy savings of up to 18% can be

achieved if reliable EV forecasts are available compared to a situation without forecast information.
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1 Introduction

The on-going energy transition towards a more decentralized and more digitized grid comes along with
numerous challenges for the energy systems worldwide. The increasing amount of renewable energy
installations at distribution grid level (mainly solar) and the decreasing cost of battery storage have made
microgrids an economically attractive alternative to the classic top-down energy supply scheme [1]. Electric
vehicles (EV) have the potential to further accelerate the emergence of microgrids thanks to the energy
flexibility which they naturally provide through their battery. Many studies have shown the high potential
electric vehicles may provide to the energy system. In [2] for instance, the impact of EVs on the distribution
grid in Belgium is assessed using a dynamic programming model. The study shows that advanced microgrid
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control methods can significantly limit the negative impact of large amounts of EVs on the distribution grid
in terms of peak load, over-voltage and line currents. [3] furthermore points out that advanced energy
management systems (EMS) are crucial to achieve a reliable and efficient operation of energy systems
including EV charging stations.

According to [4] the control methods reported in the literature can be categorized into forecasting-based
optimization (also known as Model Predictive Control) and rule-based decision-making. In general, Model
Predictive Control (MPC) outperforms rule-based control methods thanks to its natural way of adapting to a
changing system context and to its ability to consider forecasts in the control decision making. For example,
in [5] a MPC controller is proposed that optimally uses the in advance declared flexibility of EV users.

While the power of MPC stems from the consideration of forecasts in the decision making, this is also the
reason why in situations where the forecast quality is bad, the control performance may be unsatisfying. This
has been put into evidence at an EV charging station located at the Euref campus in Berlin [6] where an MPC
controller has been tested in real life. Due to the difficulty to obtain reliable EV behavior forecasts for this e-
Car sharing station, an unsatisfying control performance had been observed. In [7] an alternative energy
management system relying on a probabilistic certification method has been proposed to deal with such
strong uncertainties in the EV availability at public EV charging stations. These works assume that no forecast
information at all is available for the individual EVs. This is the most conservative assumption one can make
and in many practical cases the situation is luckily more comfortable. For instance, at a residential charging
point located in a private garage, the availability of the EV can be forecasted quite well thanks to the repetitive
behavior of most humans, especially during a working week. In other situations, for instance at a public
charging station in a residential area, this may quickly become more complicated if there was no possibility
to identify which user connects to a given charging point.

In this work the impact of available EV forecast information on the performance of a microgrid energy
management system using MPC is evaluated. The considered microgrid is a small office building equipped
with a photovoltaic system, a stationary battery and a public EV charging station as shown by figure 1.
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Figure 1: Microgrid composed of a photovoltaic system, a battery, a building load and an EV charging station.
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Furthermore, the system is subject to a variable time-of-use tariff and it is assumed that the charging power
can be modulated between zero and the vehicles’ nominal charging power. Note that vehicle-to-grid
technology is not considered in this work. The following four scenarios in terms of availability of EV forecast
information are considered and their impact on the control performance compared with each other:

1. EVs are not considered as a controllable system and are directly charged at their nominal power
when they arrive. The EMS only controls the stationary battery and does not consider any forecast
information about the EVs’ power consumption.

2. As in the previous case EVs are non-controllable, however, in the EMS the aggregated power
consumption of the charging processes, averaged over the past days is considered as a forecast in
the MPC controller which still controls only the stationary battery.

3. EV users declare their vehicle to the charging station after they arrive and provide the planned
departure time, for instance through a mobile app. Here, not only the stationary battery is controlled
by the EMS, but also the EV charging process.

4. Perfect forecasts are available on a day-ahead basis. This scenario achieves the best possible control
performance, but is unrealistic in practice. However, it provides very useful results which can serve
as a theoretical upper bound for the performance achieved with the previous three scenarios.
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2 Model Predictive Controller

In this section the MPC-based microgrid energy management system is explained.

2.1 System model

Among the sub-systems depicted in figure 1, only the stationary battery and the batteries of the electric
vehicles are controllable. The building load and the renewable photovoltaic production are non-controllable,
but will be considered in the MPC controller by their forecasted power profiles over the 24 hour prediction
horizon.

The dynamic model of the stationary battery is as follows:

_ n=nt if  Pgu =0 B
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b, is the energy stored in the battery at time z, n* and 1~ are the charging and discharging efficiencies, tg is
the sampling period and / is the number of discrete time steps in the prediction horizon. Similarly, the battery
model of the i-th vehicle is as follows:
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2.2 Control objective

The control objective is to maximize the self-consumption of locally produced PV energy and to minimize
the costs for buying energy from the grid. This is achieved by the following objective function:

Minimize Y- FcP* -max(0,Pg,) 3)

where C tB “ is the variable energy buying price and Pg ¢ is the power consumed from the grid at time 7. Note
that the self-consumption objective is realized implicitly, since the locally produced PV energy is free of cost.

2.3 Control model constraints

The following set of linear constraints represents the system model in the control optimization problem:
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Constraint (4) is the energy balance equation. Constraints (5) — (7) implement the model of the stationary
battery with the measured state-of-charge beqsurea and Pager, Poare Which represent the charging and
discharging powers respectively. Note that the non-linear constraint Pg,, * Pz, = 0 which prevents
simultaneous charging and discharging of the battery can be omitted, because it is implicitly respected by the
control model. This is because simultaneous charging and discharging is economically not interesting.
Finally, the constraints (8) and (9) represent the battery model of the i-th vehicle. bfz?r is either the forecasted
state-of-charge at the forecasted arrival time télr)r of the vehicle, or the measured state-of-charge in case the
vehicle is already connected to the charging point at t=0.
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3 Case study

The considered microgrid is a small commercial building with an average electric load around 25 kW. The
building is equipped with a roof-top PV installation of 60kW and a stationary battery of SOkWh. Furthermore,
a charging station composed of 6 charging points, each with a maximum power of 7.4 kW is installed at the
site. Three charging points are used by private vehicles which typically arrive in the morning and stay
connected during the whole day. Some of them also leave during the lunch hours. The other three charging
points are used by professional EVs owned by a small business (e.g. a post office or a food delivery service
for elderly people) located in the building. They are typically connected during the night and are used during
the day with a short recharge period during the lunch break.

To generate realistic EV behavior data (arrival time, departure time and required energy), a statistic model
has been created based on the EV usage patterns described above. The statistic EV behavior data generated
from this model for a one-year period is then used by the simulation model and — depending on the forecast
scenario — by the MPC controller. Concerning the electric energy consumption of the building and the
photovoltaic production, perfect forecasting models are assumed, which provide at each control step the
actual power load and photovoltaic power profiles for the next 24 hours to the MPC controller.

3.1 Illustration of the control behaviour with perfect forecast information

Figure 2 illustrates an exemplary simulation result which has been achieved using the MPC controller with
perfect forecast information. This is the best possible control behavior which can be achieved, since at each
control instant the MPC controller made its decision based on the precise forecast of when each vehicle was
going to arrive at the charging station and when it was going to depart. The figure shows how the vehicles
connected during the whole day (charging point 1 & 2 in the second subplot) are partially charged during the
mid-peak period where energy is relatively cheap, and during the afternoon hours where a surplus of locally
produced “free” PV energy is available.

benefit from mid-peak charge vehicles from
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Figure 2: Exemplary result using perfect forecast information. It shows how the EV charging process is adapted to the
variable time-of-use prices and to the surplus PV power which is available in the afternoon.
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3.2 Impact of the EV forecast information on the control performance

This section provides detailed simulation results. The following four levels of forecast information are
compared with each other through simulations covering a full year:

Q) no forecasts: EVs are recharged directly after their arrival at nominal power, since their planned
departure time is unknown and the battery should be recharged as much as possible before the
next departure. The MPC controller only manages the stationary battery and does not consider
any forecast of the power consumption of the EV charging process.

(i) average power forecast: the EVs are still recharged directly after their arrival, since no
information regarding a specific EV’s schedule is available. However, in the MPC controller for
the stationary battery, a forecast of the aggregated power consumption of the EV charging points
is considered. More precisely, the average daily EV power consumption profile over the last 10
days is used as the forecast for the next day.

(iii) departure forecast: EV users declare their planned departure time and the state-of-charge of
their vehicles’ battery after their arrival to the charging station. The charging process of the EVs
is managed by the MPC controller based on this forecast information.

(iv) perfect forecast: It is assumed that EV arrival- and departure times and the state-of-charge of
the vehicle’s batteries at their arrival can be precisely forecasted on a day-ahead basis. While
this scenario is unrealistic in most cases, it is highly interesting, because it allows to assess the
hypothetical maximal cost savings which might be achieved in a given use case.

Table I shows the detailed simulation results. Note that in total 12 full year simulations have been run. More
precisely, each of the four forecast information scenarios has been simulated three times with different sizes
of the stationary battery (0, 50 and 100 kWh). This battery size study allows to gain some additional insights
regarding the value of installing a stationary battery in such a microgrid.

Table I. Simulation results showing the yearly energy cost and the self-consumption ratio of locally produced
PV energy as a function of the available forecast information and the size of the stationary battery at the
microgrid.

battery size = 0 kWh battery size = 50 kWh | battery size = 100 kWh

Energy Self-cons. Energy Self-cons. Energy Self-cons.
Cost [€] ratio [%] Cost [€] ratio [%] Cost [€] ratio [%]
6828 69.9 5856 82.7 5178 90.2
no forecasts
6828 69.9 5762 83.7 4926 90.6
average power forecast
(-0.0 %) (+0.0 %) (-1.6%) (+1.0 %) (-4.9%) (+0.4 %)
5650 77.1 4686 88.1 4030 93.9
departure forecast
(-17.3%) | (+7.2 %) (-19.9%) | (+5.4%) | (-22.2%) | (+3.7 %)
5650 77.1 4676 88.4 4006 94.2
perfect forecast
(-17.3%) | (+7.2 %) (-20.2%) | (+5.7 %) | (-22.6%) | (+4.0%)

For each of the simulated battery sizes, two KPIs are shown, namely the annual energy cost and the self-
consumption. Regarding the energy cost, for each battery capacity, the no forecasts scenario serves as a
reference for the achieved cost savings. A closer look at the results with the 50 kWh battery shows that taking
into account the average power forecast of the EV charging points to better control the stationary battery
only results in a cost reduction of 1.6%. In contrast, the availability of departure forecasts results in a much
more significant cost reduction of 19.9%. Interestingly, the additional gains that could be achieved with
perfect forecasts are very small. For the simulations with the 100 kWh battery, similar observations can be
made. A slight difference is the higher cost reduction of 4.9% with the average power forecasts scenario. The
self-consumption ratio measures the percentage of produced PV energy which is consumed locally within
the microgrid. The results show that considering average power forecasts does not have a significant impact
on this KPI (< 1.0%), whereas the availability of departure forecasts and the fact that the EV charging process
is optimized in this case, results in an increased self-consumption ratio of up to 7.2%.
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Finally, considering the sensitivity of the achieved results to the size of the stationary battery, two
observations can be made. The first one is that the introduction of a stationary battery significantly reduces
the energy costs, independently of the four considered forecast scenarios. For example, with the departure
forecast scenario, a 50 kWh battery reduces the annual energy costs by 5650 — 4676 = 974 € which
corresponds to a reduction of 17.2%. The second observation is that a stationary battery also increases the
self-consumption ratio. The increased self-consumption ratio is one of the two reasons for the quite
significant energy cost reduction. The other reason is the strong variation in the energy price between the off-
peak, mid-peak and on-peak periods, which allows to buy and store energy while it is cheap and consume it
later when the price is high.

4  Conclusion

Recent research has demonstrated the potentials of using the flexibilities in the EV charging process to
overcome the challenges arising from the massive EV integration into our energy systems. This contribution
investigated the value of EV forecast information for an MPC-based microgrid energy management system
through a case study. The results obtained through full year simulations show that significant energy cost
reductions of up to 18% can be achieved when EV owners provide their planned departure time to the
microgrid energy management system. Moreover, the gap to the ideal case where full information of the EV
behavior is known in advance (including the forecasted arrival times) is shown to be very small.

While the quantitative results achieved in this case study are very sensitive to the load and PV power profiles
as well as to the underlying energy tariff, a general conclusion one that can be drawn is that the availability
of forecasts of EV departure times and the EVs’ required energy will be highly beneficial for the cost-effective
integration of EVs into microgrids and into energy systems in general. Beyond the demonstrated energy cost
reductions and improved self-consumption of local renewable energy, future research should also focus on
the impact of EV forecast information on the mitigation of power peaks which are considered as a major
threat for the distribution grid.
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