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Summary 

High anxiety among consumers with regard to the driving range of battery electric vehicles (BEV) is a 

psychological and practical barrier for a wide-scale market uptake of such vehicles. In this regard, many 

academic and empirical researches focus on BEV’s real-world driving range measurement and estimation to 

improve BEVs’ efficiency and driving range. Even though consumers give more significance to real-world 

driving range than labeled driving range, type approval driving range is also important because it is the 

standard to compare different types of BEVs in same conditions. 

The objective of this paper is to identify the technical attributes of vehicle, battery and motor that impact type 

approval driving range of BEVs. Multiple linear regression analysis have been conducted in this research 

paper to evaluate the significance of the attributes in driving range of BEVs. Ratio variables of vehicle weight, 

battery capacity, motor power and on-board charger power are concluded to have a significant impact on 

BEVs driving range through the analysis.  

Keywords: BEV (battery electric vehicle), electric drive, motor, thermal management, battery management 

1 Introduction 

The marketability of BEVs will be a more important issue than ever as government authorities plan to phase 

out subsidies on BEVs, while more and more BEVs are sold around the world. High price of BEVs compared 

with internal combustion engine vehicles (ICEV), long recharging time and more importantly short driving 

range are pointed out as obstacles to jump over chasm [1, 2, 3]. Automakers continue to offer and sell BEVs 

with longer driving range and fast charging capability to enhance the marketability. [2] Especially, academic 

literatures suggest that driving range is a potential barrier for the market uptake of BEVs [4]. Majority of the 

BEVs sold in the market currently offers below 200 miles driving range, which is constrained by battery 

capacity and vehicle curb weight based on labels approved by EPA. In comparison, gasoline ICEVs offer 

driving range of more than 300 miles per refueling [5].  
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There are many methods that automakers can employ to address consumers’ anxiety about driving range of 

BEVs. Battery capacity increase is the most accessible and feasible approach to achieve this objective; most 

car makers are adopting this strategy at the battery pack level. Energy density evolution is ongoing at cell 

makers through using high voltage technology and injecting more cobalt into chemistry. For instance, Nissan 

Leaf, Volkswagen e-Golf, Chevrolet Volt, and BMW i3 models have achieved 20~50% increase of driving 

range [6, 7, 8, 9, 10]. Decreasing charging time is another method to relieve drivers’ anxiety. BEV energy 

efficiency improvement also results in extending driving distance―a 14% increase was observed in Nissan 

Leaf 2013 model compared to 2012 model by refined aerodynamics, greater utilization of regenerative 

braking, and better energy management [11]. 

Consumers’ anxiety on driving range is more relevant with real-world driving range, whereas only type 

approval driving range is available officially for them. BEVs’ real-world driving range values tend to be 

substantially shorter than their type approval values [12]. For instance, consumer-adjusted electric driving 

range is typically 30% shorter than the tested ranges reported in the United States [13]. The type approval 

driving range of EVs is estimated under a series of standardized driving tests; these values often differ from 

real-world driving range values due to many factors, including traffic conditions. Traffic can be significantly 

different on different routes and locations during peak and lull periods; therefore, the test results from 

standardized driving cycles are usually inconsistent with the results obtained during real-world driving [13]. 

Therefore, to provide consumer with information about energy efficiency and emissions, many academic and 

empirical researches focus on BEV’s real-world driving range, which is the most critical factor for adoption 

of BEVs [14, 15, 16, 17]. On the other hand, the real-world driving range cannot be accurately estimated 

currently because of differing  driving conditions. In this regard, type approval driving range is important 

because this is the standard to compare different types of BEVs in the same boundary and initial conditions. 

Furthermore, market researchers and R&D practitioners need to have an understanding on the type approval 

driving range as well as real-world driving range numbers to promote their BEVs. In spite of the importance 

of type approval driving range, not much interest has been shown on data-based empirical analysis of the 

significant factors influencing type approval driving range.  

The objective of this paper is to identify the technical attributes of BEVs, battery and motor that impact 

BEV’s type approval driving range. Statistical equation is developed to elaborate the significance of the 

attributes in the driving range by employing multiple linear regression analysis. Plug-in hybrid vehicles are 

not included in this study because all of representative test cycles are taking ICEV’s engine characteristics 

as important determinants as well as stored electric energy supplied to the wheels. 

The aim of this study is to provide industry practitioners with a comprehensive understanding on the 

influential factors that affect driving range of BEVs. 

2 Literature survey  

There are two types of literatures in terms of analysis of parameters influencing BEVs driving range. One is 

to simulate various factors to estimate the optimal BEV driving range [18, 19, 20, 21, 22, 23]. The other is 

empirical studies to examine how much the driving range is impacted by different driving conditions with 

real-world driving data [24, 25].  

Understanding key impact factors on the energy efficiency of BEVs which can be interpreted to electric 

driving range is essential to conduct this study. There are four main categories and those are technology and 

vehicle characteristics, driver’s behavior, travel types and other driving conditions [3]. In type approval 

process, the latter three are formulated by boundary conditions. Therefore, the technology and vehicle factors 

are taken into the research consideration. Table 1 represents the only vehicle and technology factors effect on 

driving range of BEVs in summarizing six prior researches. 

After reviewing existing researches on driving range of BEVs and from discussions with industry market 

researchers and engineers, Table 2 lists the factors taken in this paper for multi-regression analysis. All 

electric vehicle range is the single independent variable whereas other 10 factors are explanatory variables. 

As concluded in the prior researches, vehicle weight is the most significant factor influencing driving distance 

and vehicle cross section area is selected as a substitutional variable for vehicle drag coefficient. Despite no 

selection from the prior researches, vehicle body type and segment are included in order to examine the effect 
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of the factors in a statistics model. As for technological factors of BEV’s components, motor power and 

torque, battery capacity, cooling system type, battery management system types and on-board charger output 

power are taken for the analysis considering the significance described in prior researches as shown in Table 

2.  

 

Table 1.  Influential factors researched in prior researches 

Study Method Influential factors of technology and vehicle attributes 

[18] Simulation Vehicle weight, battery capacity, battery weight, body shape, motor power 

[20] Simulation 
Vehicle weight, vehicle drag coefficient, vehicle regenerative braking, wheel 

radius, wheel rolling resistance, battery capacity, battery power 

[22] Simulation Vehicle weight, motor power, on-board charger power, battery capacity 

[26] Simulation 

Vehicle weight, vehicle drag coefficient, vehicle final gear ratio, vehicle max 

speed, vehicle 0-100km seconds, vehicle cross section area, battery Voltage, 

battery capacity, motor power, motor torque, motor type, motor efficiency, motor 

number of poles, moment of inertia, wheel radius, gear efficiency, HVAC power 

[28] Real driving 

Vehicle weight, vehicle drag coefficient, vehicle cross section area, wheel radius, 

wheel rolling resistance, battery capacity, battery voltage, inverter power, motor 

power, motor torque, wheel speed, wheel torque 

[25]  Real driving 
Vehicle weight, vehicle drag coefficient, vehicle cross section area, wheel rolling 

resistance, 

 

 
 Table 2. Factors taken into account in present paper and the source 

Factor Variable Description Source 

V_Range Ratio Vehicle electric driving range* IHS Markit Fuel Consumption Research 

V_Weight Ratio Vehicle curb weight  IHS Markit Fuel Consumption Research 

V_Area Ratio Vehicle cross section area IHS Markit Fuel Consumption Research 

V_Body Nominal Vehicle bodytype  IHS Markit Auto Insight 

V_Segment Nominal Vehicle sales segment  IHS Markit Auto Insight 

Mt_Power Ratio Motor peak power IHS Markit Alternative Propulsion 

Mt_Torue Ratio Motor peak torque IHS Markit Alternative Propulsion 

B_Capacity Ratio Battery pack capacity IHS Markit Alternative Propulsion 

B_Cooling Nominal 
Battery cooling system type  

(Refrigerant, Coolant, Air) 
IHS Markit Supplier Insight 

B_BMS Nominal 
Battery management system type  

(Stand alone, Integrated, Modular) 
IHS Markit Supplier Insight 

OBC_Power Ratio On-board charger output power IHS Markit Supplier Insight 

* All different type approval electric driving range values converted into the Worldwide Harmonized Light Vehicle Test 

Procedure (WLTP) based numbers. BEV’s driving range differs relying on Type Approval (TA) tests in different regions 

as well as parameters of an electric vehicle like battery capacity, vehicle weight, battery management system, thermal 

management system, electric motor specification and other non-trivial factors. However, market intelligence researchers 
need standardized criteria to compare different vehicles under the same conditions. It is difficult to compare type 

approval electric driving range of BEVs sold in different regions under the same conditions, because the value of EVs 

varies depending on the type approval test cycles. In order to solve this problem, we used a numerical conversion method 

developed by IHS Markit to compare the different type approval driving ranges. 
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3 Statistical analysis 

Multiple linear regression analysis is conducted to study the significance of the influences. In section 3.1, 

scope and source of data are introduced and statistical model along with the result is described in the section 

3.2. SPSS 25 software of IBM is used for the analysis. 

3.1 Data collection 

It is not easy to collect comprehensive data of BEVs sold around the globe because of lack of availability of 

such data in non-commercial sources. However, a few commercial sources provide the data and data from 

IHS Markit has been used for this study. IHS Markit provides various types of products such as Auto Insight 

involving specification of all types of vehicles in production, VPaC developed to provide powertrain 

specification, Alternative Propulsion including eco-friendly car’s specification, and Supplier Insight, which 

offers technology and specification of vehicle components and forecast. The dataset is extracted from the 

IHS Markit products described in Table 2. and used for this analysis. The dataset includes 266 models sold 

around the globe. Production of some models discontinued and majority of the cars are in production. Table 

3 lists three models out of the dataset as examples. 

 

Table 3. Example of vehicle specification collected in the dataset 

 BMW i3 Chevrolet Bolt Renault Zoe 

V_Range (km) 312 520 175 

V_Weight (kg) 1,297 1,624 1,427 

V_Area (𝑐𝑚2) 2,799 2,815 2,702 

V_Body Hatchback Hatchback Hatchback 

V_Segment C B B 

Mt_Power (kw) 125 150 57 

Mt_Torue (N.m) 250 361 210 

B_Capacity (kWh) 33.2 60 22 

B_Cooling Refrigerant Coolant Forced Air 

B_BMS Modular Integrated Modular 

OBC_Power (kw) 11 11 7.4 

 

3.2 Statistical model and result 

A multiple linear regression (MLR) is applied to estimate all-electric driving range. As described in Table 3, 

the seven variables are ratio variables so that those can be used for MLR as it is. Meanwhile other four 

nominal variables need to be treated as dummy variables because MLR cannot estimate the result with 

nominal variables. Therefore, this analysis starts with ratio variables to estimate coefficients of the variables 

and then the nominal variables will be taken into the model one by one as a dummy variable. 

To start with ratio variables, backward elimination method is used to test the deletion of each variable using 

the statistical model fit criterion, delete the variable whose loss gives the most statistically trivial deterioration, 

and repeat the same procedure until no further variables can be eliminated without a significant loss of fit. 

Six independent variables are taken into the model and the particular form of regression function is: 

 

V_Rangei  = 𝛽0 + 𝛽1 ∗ 𝑉_𝑊𝑒𝑖𝑔ℎ𝑡𝑖  + 𝛽2 ∗ 𝑉_𝐴𝑟𝑒𝑎𝑖 +  𝛽3  ∗ 𝑀𝑡_𝑃𝑜𝑤𝑒𝑟𝑖 + 𝛽4 ∗ 𝑀𝑡_𝑇𝑜𝑟𝑞𝑢𝑒𝑖  

               +𝛽5 ∗ 𝐵_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 + 𝛽6 ∗ 𝑂𝐵𝐶_𝑃𝑜𝑤𝑒𝑟𝑖  + ui               (1) 
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where i = 1, 2, …, N represents each vehicle and ui is the error term for each model. The parameters β1, β2, 

β3 , β4,  β5 , and β6  represent the estimates with respect to vehicle weight, vehicle cross section area, 

motor power, motor torque, battery capacity and on-board charger power that be described in Table 2. 

As a result of the backward elimination, motor torque turns out to be not influential without losing 

significance of the model fit. Therefore, the final regression function become: 

 

V_Rangei  = 𝛽0 + 𝛽1 ∗ 𝑉_𝑊𝑒𝑖𝑔ℎ𝑡𝑖  + 𝛽2 ∗ 𝑉_𝐴𝑟𝑒𝑎𝑖 +  𝛽3  ∗ 𝑀𝑡_𝑃𝑜𝑤𝑒𝑟𝑖 + 𝛽4 ∗ 𝐵_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖   

                +𝛽5 ∗ 𝑂𝐵𝐶_𝑃𝑜𝑤𝑒𝑟𝑖  + ui                                         (2) 

 

The descriptive statistics information of influential factors data is presented in Table 4. The average driving 

range of 266 models with 36 kWh battery capacity in average is 231 km. The average weighs 1,503 kg and 

the car is propelled by 92 kw motor. The BEV is capable of 5.8 kw on-board charger power in average. 

 

Table 4. Descriptive statistics 

  Mean Std. Deviation N 

V_Range 231 117.9 266 

B_Capacity 36 20.7 266 

V_Weight 1503 452.5 266 

Mt_Power 92 68.5 266 

OBC_Power 5.8 3.9 266 

 

Table 5, 6, and 7 present the result of MLR model (2). The value of R square in Table 6 is 0.886, and the 

adjusted R square equals 0.884. The R square values show that 88.6% of the changes of driving range could 

be explained by the variation in other independent variables, and only 11.4% of the changes are random error. 

The probability of significance level of the regression equation in Table 5 is 0 that is less than the significance 

level of 0.05. This implicates that the linear relationship between driving range and the four independent 

variables is significant.  

 

Table 5. Variance analysis 

  Sum of Squares df Mean Square F Significance 

Regression 4366710 4 1091677 508 .000 

Residual 561036 261 2149     

Total 4927747 265       

 

Table 6. Model Summary 

R R Square Adjusted R Square  Standard Error  

.941 .886 .884 46.36 
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Table 7. Coefficients 

  
Unstandardized 

Coefficients 
  

Standardized 

Coefficients 
t Sig. 

Collinearity 

Statistics 
  

  B* 
Std. 

Error 
Beta*     Tolerance VIF 

(Constant) 150 10.79   10.00 0.000     

B_Capacity 8 0.24 1.0 22.97 0.000 0.25 4.01 

V_Weight -0.1 0.01 -0.4 -7.85 0.000 0.43 2.34 

Mt_Power 0.5 0.06 0.1 2.76 0.006 0.32 3.13 

OBC_Power 5 0.89 0.2 3.95 0.000 0.59 1.70 

* Coefficient values are modified due to confidentiality keeping the tendency 

 

In a MLR modelling, dummy variables are created to trick the regression algorithm into correctly analysing 

nominal variables [27]. The equation (3) is an example to make three dummy variables to take four different 

types of battery cooling system into the MLR model. The value of B_Cooling_i, where i = Refrigerant, 

Coolant, Air, are “0” or “1”. With this modelling, the impact and significance of nominal variables can be 

obtained. 

 

V_Rangei = 𝛽0 + 𝛽1 ∗ 𝑉_𝑊𝑒𝑖𝑔ℎ𝑡𝑖  + 𝛽2  ∗ 𝑀𝑡_𝑃𝑜𝑤𝑒𝑟𝑖 +  +𝛽3 ∗ 𝐵_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖  + 𝛽4 ∗ 𝑂𝐵𝐶_𝑃𝑜𝑤𝑒𝑟𝑖  

            +𝛽5 ∗ 𝐵_𝐶𝑜𝑜𝑙𝑖𝑛𝑔_𝑅𝑒𝑓𝑖 + 𝛽6 ∗ 𝐵_𝐶𝑜𝑜𝑙𝑖𝑛𝑔_𝐶𝑜𝑜𝑙𝑎𝑛𝑡𝑖  + 𝛽7 ∗ 𝐵_𝐶𝑜𝑜𝑙𝑖𝑛𝑔_𝐴𝑖𝑟𝑖  +  ui   (3) 

 

Table 8. Coefficients 

  
Unstandardized 

Coefficients 
  

Standardized 

Coefficients 
t Sig. 

Collinearity 

Statistics 
  

  B* 
Std. 

Error 
Beta*     Tolerance VIF 

(Constant) 150 10.997 
 

8.969 0.000 
  

B_Capacity 8 0.223 1.04 26.711 0.000 0.292 3.420 

V_Weight -0.1 0.009 -0.23 -7.433 0.000 0.436 2.296 

Mt_Power 0.5 0.06 0.10 2.76 0.006 0.32 3.13 

OBC_Power 5 0.95 0.10 3.54 0.000 0.52 1.91 

B_Cooling_Air 11.3 0.89 0.20 3.95 0.000 0.59 1.70 

B_Cooling_Coolant 17.5 7.28 0.01 0.24 0.811 0.62 1.59 

B_Cooling_Ref. 30.4 16.95 0.04 1.79 0.074 0.79 1.26 

* Coefficient values are modified due to confidentiality keeping the tendency 

 

The value of R square of Equation (3) is 0.885, and the adjusted R square equals 0.882. The probability of 

significance level of the regression equation is 0. However, significance of battery cooling dummy variables 

in Table 8 are 0.0, 0.8 and 0.07. The value 0.8 is too big to be statistically significant. Therefore, the 

classification of battery cooling type turns out to be not valid in a statistics model. 

The same analysis carried out to all other norminal variables that are vehicle body type, vehicle segment and 

battery management system. However, there is no significant statistics models because of one or more 

dummy variables with high significance values. 

4 Conclusion and discussion  

This research is motivated by the idea that data based statistical analysis would provide market researchers 

and eningeers with insights into the vehicle and technology factors that affect BEV driving range.  
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The results in Table 5~7 show that the independent variables obtained by the proposed multiple linear 

regression model represent the dependent variable, the electric driving range, with about 90% of explanatory 

power. As evidenced in many prior researches, introduced in Table 1, battery capacity, vehicle weight and 

motor power are the most meaningful variables to explain the driving range variances. 

The interesting result from the statistics model (1) is that on-board charger power has high relevance with 

the driving range. There is a high possibility that higher power on-board chargers are more efficient when 

charging BEVs, that definitely results in longer driving range in type approval procedures. However, from 

discussion with industry experts, we realized that BEVs with large battery capacity would have high power 

on-board charger to recharge the battery in a short time. In this case, the collinearity among independent 

variables need to be checked. However, VIF numbers that are far lower than 10 in Table 8 indicate no 

significant collinearity issues in a statistics point of view. Therefore, we concluded that on-board charger 

power can be an influential factor for this model. Furthermore, R square value of the equation involving on-

board charger is 0.08 higher than the model without on-board charger power.  

Unlike the insistence of strong correlation between electric driving range and market segment [29], the 

regression models including dummy variables of vehicle body type and segment showed high significance 

numbers supporting null hypothesis. Not enough sample vehicle numbers in specific segments might result 

in this high significance values. 

In regard to the technology types such as battery management system and cooling system, we expected that 

there will be high relevance with driving range as prior studies deal with this topic importantly [29, 30]. 

According to the interview with an industry expert, although the battery management system architecture is 

used as an independent variable in this study, he suggested that software algorithm is a more important factor 

than hardware architecture. It is considerable to take a variable related to algorithms in a future research. On 

the other hand, MLR model involving cooling system architecture dummy variable shows meaningful 

coefficient in Table 8. The result shows that refrigerant is the most effective and coolant and air-cooling 

system follow. This tendency was also supported by an interview. However, the analysis significance doesn’t 

support the statistics analysis unfortunately. We intuitively assume that high energy consuming BEVs are 

equipped with coolant and refrigerant system and this might increase the ambiguity. 

In conclusion, four ratio variables are found to have a significant impact on BEVs driving range through the 

multiple linear regression analysis while other categorical factors are trivial. Nevertheless, the trivial factors 

in this research are worth researching in future with more relevant values and more sample data. 
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