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Summary 

Electric vehicles (EV) are considered to reduce oil dependency, noise and local air pollution as well as 

greenhouse gas emissions caused by road transportation. Today, an early market penetration phase already 

started and can be observed in many countries. But how could the diffusion and adoption of EV be modelled 

to create consistent scenarios? With which EV driving and charging behavior can these scenarios be 

associated and what load shifting potentials can be derived? This work provides an answer to these questions 

by describing a hybrid modelling approach of an EV diffusion scenario consisting of a top-down macro-

econometric Bass model answering the question at what point in time how many EV will be on the market, 

and a bottom-up micro-econometric binary logistic EV adoption model answering who is likely to adopt. 

This set of methods is applied on representative mobility data sets available for France and Germany in order 

to simulate driving and charging behaviors of potential French and German EV adopters. In addition, a 

sampling method is presented, which reduces computational times while intending to remain representative 

for the population of EV adopters considered. Results show that EV diffusion dynamics are slightly higher 

in France than in Germany. Furthermore, average plug-in times, average active charging periods, average 

load shifting potentials and average energy charged per EV differ slightly between France and Germany. 

Computational times can be reduced by our approach, resulting in the ability to better integrate EV diffusion, 

adoption and representative charging demand in bottom-up energy system models that simulate European 

wholesale electricity markets. 
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1 Introduction 

Greenhouse gas (GHG) emissions have a significant impact on the climate, leading to many associated 

undesirable side effects [1]. Moreover, fossil fuels are a finite resource. In Europe, realizing this led to an 

agreement on long-term targets for the reduction of GHG emissions. By 2050, these should be reduced by 

80 % compared to 1990 [2]. The share of the transport sector in European GHG emissions was 24 % in 2016 

[3]. Against the background of a growing share of emissions in the transport sector [4], emission reduction 

strategies within this sector could be particularly effective [5]. Current political efforts to reduce GHG 

emissions in the transport sector are scarce compared to the societal effort necessary to achieve significant 

reductions [6]. In the global context, it is assumed that emissions in the transport sector could double due to 

rising energy demand in emerging countries [7]. This applies in particular to motorized private transport. 

Cars are responsible for around 12 % of total European Union emissions of carbon dioxide [8]. A promising 

strategy to reduce GHG emissions in the transport sector is the electrification of cars [6, 8, 9]. Particularly in 

industrialized countries, the number of electric vehicle (EV) registrations has been rising continuously since 

2008 [10] despite barriers specific to EV, such as limitations in range, a lack of charging infrastructure and 

high purchase prices [11]. 
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For the estimation of potential structural effects of EV diffusion, e.g. on charging infrastructure and power 

supply, adequate EV diffusion models are necessary, showing at which point in time how many EV are being 

charged at which locations and how much energy they need to be charged. Therefore, this work answers the 

following research questions: 

RQ1: How could the diffusion and adoption of EV be modelled for France and Germany? 

RQ2: With which EV driving and charging behavior and load shifting potentials could this scenario 

be associated in France and Germany? 

RQ3: What are the effects of a re-sampling approach intending to reduce computational effort? 

Section 2 describes the methods and data used. Section 3 presents and discusses the results for the original 

and re-sampled case. Section 4 concludes and gives an outlook for future research. 

2 Methods and data 

To find adequate answers to the research questions, Section 2.1 describes the hybrid EV diffusion approach 

applied including a model variant intending to reduce computational effort. Section 2.2 describes the method 

deriving corresponding EV charging behavior of the EV adopters. 

2.1 EV diffusion and adoption 

Section 2.1.1 describes our application of the top-down macro-econometric Bass diffusion model. Section 

2.1.2 a bottom-up micro-econometric binary logistic EV adoption model. Section 2.1.3 describes how these 

models interact and considers a model variant reducing computational effort. 

2.1.1 Bass diffusion model 

The Bass diffusion model is used to model EV diffusion in the market areas under consideration [12]. In this 

model, innovation diffusion depends on the interaction between current and potential adopters, called 

innovators and imitators. These are represented by an innovation coefficient (𝑝) and an imitation coefficient 

(𝑞). 𝑀 is the market potential, and 𝑡 the index for the year considered. For mathematical reasons, 𝑏 is the 

parameter where 𝑡 − 𝑏 = 0. The number of cumulative adoptions up to time 𝑡, 𝑁(𝑡), is represented by 

equation 1: 

𝑁(𝑡) = 𝑀
1 − 𝑒−(𝑝+𝑞)(𝑡−𝑏)

1 +
𝑞
𝑝 𝑒−(𝑝+𝑞)(𝑡−𝑏)

  (1) 

Taking into account annual EV stock numbers, assumptions about medium-term governmental targets and 

the assumption that there will be a complete substitution of internal combustion engine vehicles in the long 

run (which already reflects the targets of some European governments, such as France, not to register petrol 

and diesel vehicles after 2040 [13]), equation parameters for the innovation and imitation coefficients are 

determined. However, in the long term autonomous driving and car sharing might result in smaller vehicle 

fleets. Due to the challenges that internal combustion engine vehicles impose on society, it can be assumed 

that in the future environmental standards will be further tightened. EV are likely the first choice for meeting 

these fleet standards in the mid term, as suggested by growing investment in expansion of charging points 

and the upcoming portfolios of major vehicle manufacturers, even if alternative technology paths could be 

taken (e.g. fuel cell technology). A non-linear regression method is used to determine the parameters of the 

Bass EV diffusion scenarios for France and Germany (equation 1). Levenberg-Marquardt's numerical 

optimization algorithm [14, 15] is used for nonlinear curve fitting using OriginPro 2017G. 

2.1.2 Binary logistic EV adoption model 

In addition to knowing how many EV will be registered at a given time (Section 2.1.1), car companies and 

grid operators are interested to receive an answer to the question which customers will shift first to EV. 

Consequently, private purchase intentions for EV by German and French users of commercial EV were 

analyzed within the accompanying research activities of the project CROME [16]. As the survey was carried 

out directly after the employer had decided to participate in the project, many of the respondents had only 
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little experience with EV in these days. The conducted online survey included a question on whether the 

German and French EV users of commercial and public enterprises could imagine buying an EV privately in 

the next 10 years [17, 18]. In addition, the respondents were asked for further information on their mobility 

behavior, the role of the respondents in their companies, their experiences with EV, household income, car 

usage frequency, nationality and the number of cars in households in order to examine whether the data on 

future EV purchase decisions can be explained by these variables. Dependencies between EV adoption 

intentions and these variables are observable and can be described with a binary logistic regression model 

[18].  

2.1.3 Hybrid EV diffusion modelling approach 

Representative mobility studies are available for France and Germany [19, 20]. We assume that individuals 

currently using cars will also be using cars in the future and will eventually become EV users at a certain 

point in time. EV adoption probabilities 𝑝𝑖
𝑃𝐸𝑉 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛

 are calculated (Section 2.1.2) and assigned to every 

car driving individual 𝑖 ∈ 𝐼 within each of the representative mobility studies [19, 20] as described in [21]. 

The car driving individuals have an individual weight 𝑤𝑖 depicting their representativeness of true car driving 

individuals, and are sorted by 𝑝𝑖
𝑃𝐸𝑉 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛

 to get a sorted list of car users 𝐼𝑠𝑜𝑟𝑡 = {𝑖 ∈ 𝐼: 𝑝1
𝑃𝐸𝑉 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛

≥

𝑝2
𝑃𝐸𝑉 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛

≥ ⋯ ≥ 𝑝𝐼
𝑃𝐸𝑉 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛

}. 𝐴𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

⊆ 𝐼 represents the set of EV adopting individuals in a 

country in a certain year 𝑡̃. 

We use two different approaches to determine the set of EV adopters (𝐴𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

 and 𝐴̂𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

) in a 

specific year 𝑡̃. The traditional approach uses Method 1 and has already been applied in [21, 22]: 

Pseudocode of Method 1 

1   for all 𝑡̃ do 

2      𝒘𝒉𝒊𝒍𝒆 𝑖 ∈ 𝐼𝑠𝑜𝑟𝑡 ∧ 𝑊 ≤  𝑁(𝑡̃) 
3           Set  𝑊 = 𝑊 + 𝑤𝑖  

4            Add i  to 𝐴𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

 

5      end while 
6   end for 

According to the approach described with the pseudocode of Method 1 all car users 𝑖 ∈ 𝐼𝑠𝑜𝑟𝑡 become EV 

adopters 𝑖 ∈ 𝐴𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

 if their EV adoption probability 𝑝𝑖
𝑃𝐸𝑉 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛

 is sufficiently high for the year 𝑡̃ and 

if their combined weight 𝑊 does not exceed the total number 𝑁(𝑡̃) of EV adopters for that year. 

As computing times of our heuristic EV charging algorithm [22] scale linearly with the number of adopters 

and corresponding charging events, which in turn grow exponentially with the growth of initial purchases 

[12], we use the alternative approach described in the pseudocode of Method 2. It limits the number of 

adopters to 𝑘𝑙𝑖𝑚𝑖𝑡 as well as their charging events, but still intends to be representative of the original EV 

adopting population considered 𝐴𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

 identified with Method 1. 

Pseudocode of Method 2 

1    for all 𝑡̃ do 

2        Set  𝐼𝑡̃
𝑠𝑜𝑟𝑡 = {𝐼𝑠𝑜𝑟𝑡  | 𝑖 𝑚𝑜𝑑 𝑧𝑡̃ = 0}           with 𝑧𝑡̃ = 𝑛𝑖𝑛𝑡(

𝑊
𝐴

𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

𝑘𝑙𝑖𝑚𝑖𝑡 ) 

3        𝒘𝒉𝒊𝒍𝒆 𝑖̂ ∈ 𝐼𝑡̃
𝑠𝑜𝑟𝑡 ∧ 𝑖̂ ≤ 𝑘𝑙𝑖𝑚𝑖𝑡 

4            Set  𝑄̂𝐴̂
𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

= 𝑄̂𝐴̂
𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

+ 𝑞𝑖̂ 

5            Add  𝑖̂ to 𝐴̂𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡 

6        end while 
 

7        while 𝑖̂ ∈ 𝐴̂𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

 

8            Set   𝑤̂𝑖̂ = 𝑤𝑖̂ ∙ 𝜂𝑡̃
𝑠𝑐𝑎𝑙𝑖𝑛𝑔                                with 𝜂𝑡̃

𝑠𝑐𝑎𝑙𝑖𝑛𝑔
=

𝑄
𝐴

𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

𝑄̂
𝐴̂

𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡 

9         end while 
10   end for 
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Method 2 first calculates 𝑧𝑡̃ in order to define a reduced sorted list of EV drivers 𝐼𝑡̃
𝑠𝑜𝑟𝑡 for every year 𝑡̃ (line 2). 

The reduced adopter set 𝐴̂𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

 is a limited, sorted selection of every 𝑧𝑡̃
th EV adopter from 𝐼𝑠𝑜𝑟𝑡 of size 

𝑘𝑙𝑖𝑚𝑖𝑡 (line 5). The adopter specific daily charging energy demand 𝑞𝑖̂ is accumulated to 𝑄̂𝐴̂
𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

 (line 4) 

and set in relation to the total daily charging energy demand of the original adopter set 𝑄𝐴
𝑡̃
𝐴𝑑𝑜𝑝𝑡𝑒𝑟 𝑠𝑒𝑡

, producing 

the scaling factor 𝜂𝑡̃
𝑠𝑐𝑎𝑙𝑖𝑛𝑔

 for that year 𝑡̃. The scaling factor is applied to the original weight 𝑤𝑖̂ for each 

adopter in the reduced set in order to account for the reduced sample size (line 8). Scaling to total energy 

demand instead of adopter weight is essential as the goal of the simulation is to assess the adopters’ impact 

on an energy system. 

2.2 EV charging 

The persons adopting EV in the representative French and German mobility studies are assigned reference 

date specific mobility profiles. We assume that the mobility patterns of car usage remain constant as long as 

the range of the EV is sufficient for the trip lengths. If the pure electric range is not sufficient, we assume 

that the EV are equipped with combustion engine driven range extenders. We assume the same car usage 

behavior on every day of the simulation and a 1:1 relation between EV adopters and EV. As vehicles park 

most of the time at home or at the workplace [20], load shifting potentials are highest at these locations. 

Therefore, we assume that EV adopters have the possibility to charge their cars at home and at work. 

Combining driving and parking profiles with assumptions on EV energy consumption, battery capacity and 

available charging power, allows to determine the energy requirement and the load shifting potential of each 

charging process [21–23]. 

A charging event 𝑥 (Figure 1) can be described as follows: After arriving at a charging station at time 𝑡𝑥
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 

with a state of charge (SoC) of 𝑆𝑜𝐶𝑥
𝑎𝑟𝑟𝑖𝑣𝑎𝑙, the EV is directly charged up to a SoC level determined by 

individual minimum range (MR) requirements 𝑆𝑜𝐶𝑥
𝑀𝑅. Starting from this point in time (𝑡𝑥

𝐶𝐶), charging event 

specific load shifting potentials ∆𝑡𝑥
𝐿𝑆𝑃 provided by EV users can be used by service providers (aggregators) 

for flexible controlled charging (CC). At the point in time of departure 𝑡𝑥
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

 the SoC is at 𝑆𝑜𝐶𝑥
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

. 

 

Figure 1: EV charging event 𝑥 with load shifting potentials 

Plug-in times ∆𝑡𝑥
𝑝𝑙𝑢𝑔

 specific to charging event x are calculated by subtracting arrival time from departure 

time (cf. equation 2).  

∆𝑡𝑥
𝑝𝑙𝑢𝑔

= 𝑡𝑥
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

− 𝑡𝑥
𝑎𝑟𝑟𝑖𝑣𝑎𝑙   (2) 

Active charging times ∆𝑡𝑥
𝑎𝑐𝑡𝑖𝑣𝑒 are determined by dividing the energy charged (𝑆𝑜𝐶𝑥

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
− 𝑆𝑜𝐶𝑥

𝑎𝑟𝑟𝑖𝑣𝑎𝑙) 

by the maximum charging power 𝑃𝑥
𝑚𝑎𝑥 of a charging event (cf. equation 3). 

∆𝑡𝑥
𝑎𝑐𝑡𝑖𝑣𝑒 =

𝑆𝑜𝐶𝑥
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

− 𝑆𝑜𝐶𝑥
𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑃𝑥
𝑚𝑎𝑥   (3) 

Load shifting potentials ∆𝑡𝑥
𝐿𝑆𝑃 are calculated by subtracting active charging times ∆𝑡𝑥

𝑎𝑐𝑡𝑖𝑣𝑒 from plug-in times 

(equation 4). 

∆𝑡𝑥
𝐿𝑆𝑃 = ∆𝑡𝑥

𝑝𝑙𝑢𝑔
− ∆𝑡𝑥

𝑎𝑐𝑡𝑖𝑣𝑒  (4) 

Total energy charged 𝐸𝑡𝑜𝑡𝑎𝑙 is calculated by adding the energy charged of the single charging events 

(equation 5). 



EVS32 International Electric Vehicle Symposium & Exhibition             5 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑(𝑆𝑜𝐶𝑥
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

− 𝑆𝑜𝐶𝑥
𝑎𝑟𝑟𝑖𝑣𝑎𝑙)

𝑥∈𝑋

  (5) 

Total energy directly charged 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 is calculated by adding the energy directly charged of the single 

charging events (equation 6). 

𝐸𝑑𝑖𝑟𝑒𝑐𝑡 = ∑ 𝑀𝑎𝑥{𝑆𝑜𝐶𝑥
𝑀𝑅 − 𝑆𝑜𝐶𝑥

𝑎𝑟𝑟𝑖𝑣𝑎𝑙; 0} ⋅ 1[∆𝑡𝑥
𝐿𝑆𝑃>0]

𝑥∈𝑋

+ ∑(𝑆𝑜𝐶𝑥
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

− 𝑆𝑜𝐶𝑥
𝑎𝑟𝑟𝑖𝑣𝑎𝑙) ⋅ 1[∆𝑡𝑥

𝐿𝑆𝑃≤0]

𝑥∈𝑋

 
 (6) 

Total energy flexibly charged (controlled charging) 𝐸𝑓𝑙𝑒𝑥 is calculated by subtracting 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 from 𝐸𝑡𝑜𝑡𝑎𝑙 

(equation 7). 

𝐸𝑓𝑙𝑒𝑥 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑑𝑖𝑟𝑒𝑐𝑡  (7) 

3 Results and discussion 

Section 3.1 describes the EV diffusion scenarios developed for the French and German market intending to 

provide an answer to RQ1. Section 3.2 presents the simulation results of EV charging and compares the 

effects of the re-sampling method applied (Method 2) on the results in order to provide an answer to RQ2 

and RQ3. 

3.1 EV diffusion and adoption 

The Bass diffusion models used to project the future EV stock are estimated based on the data presented in 

Table 1. 

Table 1: Data used for diffusion model estimation 

EV stock France Germany 

End 2009 - 

[24] 

3032 

[25] 

End 2010 3368 4404 
End 2011 6167 8670 
End 2012 12,805 13,582 
End 2013 22,217 23,208 
End 2014 33,595 36,175 
End 2015 54,282 48,688 
End 2016 79,856 54,997 
Mid 2017 [1] 101,799 92,731 
Expectation 2030 6,000,000 [26] 6,000,000 [27] 
Total vehicle stock (M)1 32,675,972 [24]  45,803,560 [25] 

The French public authorities' expectations of six million EV in 2030 [26] are in line with the government 

targets set in Germany [27]. These expectations are taken into account in the scenario calculations resulting 

in the Bass diffusion model parameters shown in Table 2. 

These two EV diffusion scenarios are rather optimistic scenarios. The innovation coefficient (𝑝) of the French 

EV diffusion scenario is considerably higher compared to the German’s (cf. Table 2). However, imitation 

coefficients (𝑞) are on a similar level. According to Figure 2 the models’ forecasts of EV stock are well below 

the original national policy targets in France (2 mn in 2020 and 4.5 mn in 2025, [28]) and Germany (1 mn 

[27]). 

Based on historical new registrations for 39 countries, innovation and imitation coefficients of Bass diffusion 

models have been estimated by [29] (France: p = 1∙10-4 and q = 0.4; Germany: p = 2.5∙10-5 and q = 0.5). The 

innovation coefficients for Germany and France in our results are somewhat higher (France: p = 1.44∙10-4; 

Germany p = 4.31∙10-5), but relatively low in comparison to other common innovation coefficients averaging 

p = 0.03 [29, 30]. The estimated imitation coefficients are slightly below the average of q = 0.38 [29, 30] 

                                                        
1 Please consider that new developments in the context of car sharing and autonomous vehicles might result 

in an overall lower future vehicle stock. 
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(France: q = 0.31; Germany: q = 0.32), but are comparable with other innovations [30]. Differences could be 

due to the fact that only sales figures of zero emission EV were included in [29], but all types of plug-in EV 

are considered in our study. 

Table 2: Bass diffusion model parameters 

Parameter 
France Germany 

M SD M SD 
p 4.31 ∙ 10−5 2.67 ∙ 10−5 1.44 ∙ 10−4 1.82 ∙ 10−5 
q 0.32 0.004 0.31 0.0015 
b 2008.22 5.82 2010.01 1.05 
M 32,675,972 45,803,560 
R² ~1 ~1 

To answer the question of who adopts EV in France and Germany, we identify persons adopting EV in 

representative mobility data sets [19, 20]. The mobility studies Mobilität in Deutschland (MiD 2008) and the 

Enquête nationale transports et déplacements (ENTD 2008) contain information on mobility behavior as 

well as on the households surveyed, the individuals living there, their distances travelled and corresponding 

vehicles used. 

EV adoption probabilities are assigned to the persons interviewed in the national mobility studies using the 

binary logistic EV adoption model as described in Section 2.1. The higher the probability of EV adoption, 

the earlier these persons are assumed to adopt EV. 

The two different methods (Methods 1 and 2) are subsequently applied in order to obtain the original and the 

reduced EV adopter samples. Exemplary results are shown in Figure 2. 

 

Figure 2: EV diffusion scenarios for France and Germany 

3.2 EV charging 

For the simulation of charging behavior, we assume that EV are charged at home and at work. Information 

on charging behavior and corresponding load shifting potentials is derived from the information on the 

distances travelled, consumption assumptions (0.2 kWh/km), assumed charging power (3.7 kW), battery size 

(60 kWh) and minimum range2 (100 km). With these simple assumptions, we intend to make the results as 

transparent as possible. In addition to that, corresponding effects of varying these parameters are evaluated 

by conducting sensitivity analyses (Figure 5).  

Of the 6 mn individuals adopting EV in France and Germany, 5.5 mn of the German adopters represented by 

4487 data records and 5.9 of the French adopters represented by 4942 data records charge their EV at home 

or at the workplace on the reference day. The 5.5 mn German adopters charging at home or at the workplace 

                                                        
2 Minimum range represents the minimum range requested by customers that will always be recharged 

instantaneously after plugging-in an EV for charging. 
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charge their EV in 10.4 mn charging processes and the 5.9 mn French EV adopters during 12.2 mn charging 

processes. Hence, in the scenario considered (EV can be charged at home and at the workplace) on average 

EV users charge twice per day. Plug-in times, active charging times, load shifting potentials and the energy 

charged only differ slightly between France and Germany (cf. Table 3). In case vehicles are not parked at 

home or at work, they are not charged. 

Table 3: Charging behavior in different scenarios considered 

 

France Germany 

Original 

sample 

Reduced 

sample 

Original 

sample 

Reduced 

sample 

EV adopters charging in sample 4942 967 4487 930 

Represented number of EV adopters charging 5.9 mn 6.0 mn 5.5 mn 5.1 mn 

Charging events of sampled EV adopters 8873 1700 8590 1756 

Represented charging events 11.8 mn 12.2 mn 10.4 mn 9.5 mn 

Plug-in time 

∆𝑡𝑥
𝑝𝑙𝑢𝑔

 

M 10.36 h 9.94 h 9.93 h 10.59 h 

SD 7.23 h 7.76 h 7.75 h 7.24 h 

MED 9.67 h 11.64 h 11.42 h 9.58 h 

Active charging 

time ∆𝑡𝑥
𝑎𝑐𝑡𝑖𝑣𝑒 

M 1.56 h 1.35 h 1.39 h 1.70 h 

SD 2.18 h 2.32 h 2.39 h 2.19 h 

MED 0.82 h 0.77 h 0.79 h 0.82 h 

Load shifting 

potential ∆𝑡𝑥
𝐿𝑆𝑃 

M 8.80 h 8.59 h 8.53 h 8.88 h 

SD 7.12 h 7.59 h 7.58 h 7.16 h 

MED 7.81 h 9.09 h 8.66 h 7.89 h 

Energy charged 

per charging event 

M 5.77 kWh 4.99 kWh 5.15 kWh 6.31 kWh 

SD 8.07 kWh 8.60 kWh 8.86 kWh 8.12 kWh 

MED 3.04 kWh 2.84 kWh 2.92 kWh 3.04 kWh 

Total energy charged per day 𝐸𝑡𝑜𝑡𝑎𝑙 60.82 GWh 60.82 GWh 59.96 GWh 59.96 GWh 

Total energy directly charged per day 𝐸𝑑𝑖𝑟𝑒𝑐𝑡 1.65 GWh 2.26 GWh  2.06 GWh 2.92 GWh 

Total energy flexibly charged per day 𝐸𝑓𝑙𝑒𝑥 59.16 GWh 58.56 GWh 57.90 GWh 57.04 GWh 

Total energy charged per day represents the energy charged for the pure electric mileage of the EV adopters 

simulated. I.e. an increase of the charging power or the range specific parameter potentially results in an 

increase of the total energy charged per day. Our sensitivity analyses towards the end of this section show 

the effects of varying input parameters on total energy charged and total energy flexibly charged. 

 

Figure 3: Average hourly cumulated EV load of original and reduced sample directly charging in 2030 
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1000 EV adopters are considered in the reduced sample. 967 of the sampled French adopters representing 

6.0 mn EV adopters and 930 of the German adopters representing 5.1 mn EV adopters are charging in this 

case. Slight deviations can be observed between the reduced and the original samples concerning all of the 

parameters considered, with the exception of the total energy charged (cf. Table 3). The most unfortunate 

deviation occurs in total weighted EV adoptions, virtually adding or removing hundreds of thousands of EV 

adopters from the population. Deviations originate in the re-sampling method (Method 2), where only every 

other EV adopter is picked (reduced sample). E.g. this results in differences observable concerning total 

energy directly charged per day. However, as we focus on adequately representing the aggregated energy 

demand of the national EV fleet, we accept these deviations. As computing time of our scheduling algorithm 

scales linearly with the exponentially growing number of adopter records, corresponding reductions of 

computing times outweigh the drawbacks of these approximations. Reducing the sample size results in 

savings in computing time of about 85 % in the year 2030. 

Figure 3 visualizes the deviations of the hourly cumulated charging demand in 2030 for the two markets in 

the direct charging scenario. Deviations between the reduced and the original samples are visually 

observable, but average out over the day. 

Figure 4 visualizes the cumulated French and German EV load profiles. The load profile of direct EV 

charging and the variations in the profiles of flexible, i.e. controlled charging. The distributions of the 

charging profiles in France and Germany look quite similar. In both countries, load peaks of 12 GW can be 

observed and EV specific loads are shifted into nighttime and noon hours due to lower day-ahead market 

prices in these hours. Evening peaks when directly charging seem to be higher in France.  

 

Figure 4: Cumulated EV load of direct and controlled charging in France and Germany in 2030 

These results are based on the assumptions presented in Section 3.2 and define a base case (3.7 kW charging 
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in order to analyze the effects of parameter variation on total energy charged and total energy flexibly 

charged. The results presented in Figure 5 show that electric mileage increases with increasing battery 

capacities. However, it seems that with battery capacities of 60 kWh a certain saturation level concerning 

full electric mileage when charging with 3.7 kW is reached (Figure 5, left hand side). Further increasing 

charging power results in further increasing the share of full electric mileage (Figure 5, right hand side). In 

our simulations, sensitivities concerning effects of charging power on electric mileage seem to be slightly 

higher in Germany. Furthermore, battery capacity variation affects the total energy flexibly charged during 

a day. A certain saturation level is reached when battery capacities reach 80 kWh (133 %). As with total 

energy charged, total energy flexibly charged can be increased by increasing charging power (Figure 5, left 

hand side). Increasing minimum range thresholds result in a reduction of total energy flexibly charged, 

although seemingly to a lesser degree than variations to battery capacity. 

 

Figure 5: Sensitivity analysis concerning total energy charged and total energy flexibly charged, depending on varying 

battery capacity, minimum range and charging power. Base case: Charging with 3.7 kW, 60 kWh battery capacity and 

100 km minimum range 
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down Bass diffusion model). By applying the binary logistic model to representative mobility studies, EV 

adoption and corresponding EV charging behavior is simulated for France and Germany. 

The results of our analyses show that EV diffusion is more dynamic in France than in Germany. This finding 

is in line with other studies [29]. With respect to EV adoption, our modelling approach identifies early EV 

adopters within mobility data sets representative for France and Germany by applying a binary logistic 

regression model based on stated preferences of EV users [18]. 

As these data sets include mobility behavior, car usage behavior in particular, we derive EV adopter specific 

usage and charging behavior by assuming that all EV adopters use their own EV and that mobility behavior 

remains the same, i.e. corresponding trips travelled with conventional cars are substituted by trips with EV. 

In addition to that, we assume that EV users have the possibility to plug-in at work and at home and that EV 

users indeed use this possibility. We compare the charging behavior derived from the EV adopters’ trip 

profiles and cumulated EV specific load profiles of France and Germany. Slight differences in the simulated 

charging behavior on a disaggregated level can be observed (e.g. overall more charging events in France). 

Furthermore, slight differences on the aggregated level of cumulated EV specific load profiles are observable 

(e.g. higher evening load peaks when directly charging EV in France). Future analyses could focus on 

modelling EV charging behavior more realistically, e.g. based on observed behavior concerning plugging-in 

EV. 

Our re-sampling approach (Method 2) limiting the number of data records representing EV adopters and 

corresponding charging events results in high gains concerning computing times. This results in new 

possibilities of considering EV on a disaggregated level in energy system modelling, e.g. considering 

different EV specific charging strategies in investment decisions of power plant operators and considering 

EV specific effects throughout the whole simulation period in coupled wholesale electricity markets across 

Europe. In prior work high computing times limited such analyses [21]. Future work could focus on applying 

this advanced method of identifying EV specific load patterns to energy system models in order to analyze 

potential future effects of EV charging on electric power systems. 
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