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Summary

Electric vehicles (EV) are considered to reduce oil dependency, noise and local air pollution as well as
greenhouse gas emissions caused by road transportation. Today, an early market penetration phase already
started and can be observed in many countries. But how could the diffusion and adoption of EV be modelled
to create consistent scenarios? With which EV driving and charging behavior can these scenarios be
associated and what load shifting potentials can be derived? This work provides an answer to these questions
by describing a hybrid modelling approach of an EV diffusion scenario consisting of a top-down macro-
econometric Bass model answering the question at what point in time how many EV will be on the market,
and a bottom-up micro-econometric binary logistic EV adoption model answering who is likely to adopt.
This set of methods is applied on representative mobility data sets available for France and Germany in order
to simulate driving and charging behaviors of potential French and German EV adopters. In addition, a
sampling method is presented, which reduces computational times while intending to remain representative
for the population of EV adopters considered. Results show that EV diffusion dynamics are slightly higher
in France than in Germany. Furthermore, average plug-in times, average active charging periods, average
load shifting potentials and average energy charged per EV differ slightly between France and Germany.
Computational times can be reduced by our approach, resulting in the ability to better integrate EV diffusion,
adoption and representative charging demand in bottom-up energy system models that simulate European
wholesale electricity markets.
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1 Introduction

Greenhouse gas (GHG) emissions have a significant impact on the climate, leading to many associated
undesirable side effects [1]. Moreover, fossil fuels are a finite resource. In Europe, realizing this led to an
agreement on long-term targets for the reduction of GHG emissions. By 2050, these should be reduced by
80 % compared to 1990 [2]. The share of the transport sector in European GHG emissions was 24 % in 2016
[3]. Against the background of a growing share of emissions in the transport sector [4], emission reduction
strategies within this sector could be particularly effective [5]. Current political efforts to reduce GHG
emissions in the transport sector are scarce compared to the societal effort necessary to achieve significant
reductions [6]. In the global context, it is assumed that emissions in the transport sector could double due to
rising energy demand in emerging countries [7]. This applies in particular to motorized private transport.
Cars are responsible for around 12 % of total European Union emissions of carbon dioxide [8]. A promising
strategy to reduce GHG emissions in the transport sector is the electrification of cars [6, 8, 9]. Particularly in
industrialized countries, the number of electric vehicle (EV) registrations has been rising continuously since
2008 [10] despite barriers specific to EV, such as limitations in range, a lack of charging infrastructure and
high purchase prices [11].
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For the estimation of potential structural effects of EV diffusion, e.g. on charging infrastructure and power
supply, adequate EV diffusion models are necessary, showing at which point in time how many EV are being
charged at which locations and how much energy they need to be charged. Therefore, this work answers the
following research questions:

RQ1: How could the diffusion and adoption of EV be modelled for France and Germany?

RQ2: With which EV driving and charging behavior and load shifting potentials could this scenario
be associated in France and Germany?

RQ3: What are the effects of a re-sampling approach intending to reduce computational effort?

Section 2 describes the methods and data used. Section 3 presents and discusses the results for the original
and re-sampled case. Section 4 concludes and gives an outlook for future research.

2 Methods and data

To find adequate answers to the research questions, Section 2.1 describes the hybrid EV diffusion approach
applied including a model variant intending to reduce computational effort. Section 2.2 describes the method
deriving corresponding EV charging behavior of the EV adopters.

2.1 EV diffusion and adoption

Section 2.1.1 describes our application of the top-down macro-econometric Bass diffusion model. Section
2.1.2 a bottom-up micro-econometric binary logistic EV adoption model. Section 2.1.3 describes how these
models interact and considers a model variant reducing computational effort.

2.1.1 Bass diffusion model

The Bass diffusion model is used to model EV diffusion in the market areas under consideration [12]. In this
model, innovation diffusion depends on the interaction between current and potential adopters, called
innovators and imitators. These are represented by an innovation coefficient (p) and an imitation coefficient
(q). M is the market potential, and t the index for the year considered. For mathematical reasons, b is the
parameter where t — b = 0. The number of cumulative adoptions up to time t, N(t), is represented by
equation 1:

1 — e~ (P+a)(t-b)

Nit)=M
© 1+ %e—(mq)(t—b) (1)

Taking into account annual EV stock numbers, assumptions about medium-term governmental targets and
the assumption that there will be a complete substitution of internal combustion engine vehicles in the long
run (which already reflects the targets of some European governments, such as France, not to register petrol
and diesel vehicles after 2040 [13]), equation parameters for the innovation and imitation coefficients are
determined. However, in the long term autonomous driving and car sharing might result in smaller vehicle
fleets. Due to the challenges that internal combustion engine vehicles impose on society, it can be assumed
that in the future environmental standards will be further tightened. EV are likely the first choice for meeting
these fleet standards in the mid term, as suggested by growing investment in expansion of charging points
and the upcoming portfolios of major vehicle manufacturers, even if alternative technology paths could be
taken (e.g. fuel cell technology). A non-linear regression method is used to determine the parameters of the
Bass EV diffusion scenarios for France and Germany (equation 1). Levenberg-Marquardt's numerical
optimization algorithm [14, 15] is used for nonlinear curve fitting using OriginPro 2017G.

2.1.2  Binary logistic EV adoption model

In addition to knowing how many EV will be registered at a given time (Section 2.1.1), car companies and
grid operators are interested to receive an answer to the question which customers will shift first to EV.
Consequently, private purchase intentions for EV by German and French users of commercial EV were
analyzed within the accompanying research activities of the project CROME [16]. As the survey was carried
out directly after the employer had decided to participate in the project, many of the respondents had only
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little experience with EV in these days. The conducted online survey included a question on whether the
German and French EV users of commercial and public enterprises could imagine buying an EV privately in
the next 10 years [17, 18]. In addition, the respondents were asked for further information on their mobility
behavior, the role of the respondents in their companies, their experiences with EV, household income, car
usage frequency, nationality and the number of cars in households in order to examine whether the data on
future EV purchase decisions can be explained by these variables. Dependencies between EV adoption
intentions and these variables are observable and can be described with a binary logistic regression model
[18].

2.1.3  Hybrid EV diffusion modelling approach

Representative mobility studies are available for France and Germany [19, 20]. We assume that individuals
currently using cars will also be using cars in the future and will eventually become EV users at a certain
point in time. EV adoption probabilities p; =" ***P**" are calculated (Section 2.1.2) and assigned to every
car driving individual i € I within each of the representative mobility studies [19, 20] as described in [21].
The car driving individuals have an individual weight w; depicting their representativeness of true car driving

individuals, and are sorted by p! =" *4°P*°" tq get a sorted list of car users I5°"¢ = {i € [: pf*" 4%PH" >

py PV GAOPHON > .. > pPEV adoptiony | yAdopLerset ¢ | represents the set of EV adopting individuals in a

country in a certain year ¢.

We use two different approaches to determine the set of EV adopters (A7 %P *¢* and AZ4ePeerset

specific year ¢. The traditional approach uses Method 1 and has already been applied in [21, 22]:
Pseudocode of Method 1

)ina

1 for all £ do

2  whilei € " AW < N(b)
3 Set W=W+w;

4 Add 1 to AFOPreTSet

5 end while

6 end for

According to the approach described with the pseudocode of Methpd 1 all car users i € I5°"t become EV
adopters i € A7%°P*°" *°* if their EV adoption probability p;®” “*P“*" s sufficiently high for the year £ and
if their combined weight W does not exceed the total number N (%) of EV adopters for that year.

As computing times of our heuristic EV charging algorithm [22] scale linearly with the number of adopters
and corresponding charging events, which in turn grow exponentially with the growth of initial purchases
[12], we use the alternative approach described in the pseudocode of Method 2. It limits the number of
adopters to k'™t as well as their charging events, but still intends to be representative of the original EV

adopting population considered A7 “°P**" *** identified with Method 1.

Pseudocode of Method 2

1 foralldo
Afldopterset
2 . - . wt
2 Set [Z°" = {I°" | imod z; = 0} with z¢ = nint (— )
3 whilei € [[7" AT < klimit
,\AAdopter set ,\AAdopte‘rset
4 Set Q% = Q% +q
a ~Adopter set
5 Add ito Al
6  endwhile
o oA ~Adopter set
7 whilei € A e
Adopter se
—~ scalin . scalin Qt
8 Set Wi = Wi " 1z g with UF; 9= _aAdopter set
Q't
9 end while
10 end for
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Method 2 first calculates z; in order to define a reduced sorted list of EV drivers [5°™ for every year £ (line 2).
The reduced adopter set A7%°P**"*** is a limited, sorted selection of every z;"" EV adopter from 1°°™* of size

k'mit (line 5). The adopter specific daily charging energy demand g; is accumulated to Q’ig‘dopwmt (line 4)

Adopter set
and set in relation to the total daily charging energy demand of the original adopter set Q“ Y , producing

the scaling factor 13°**" for that year . The scaling factor is applied to the original weight w; for each
adopter in the reduced set in order to account for the reduced sample size (line 8). Scaling to total energy
demand instead of adopter weight is essential as the goal of the simulation is to assess the adopters’ impact

on an energy system.

2.2 EV charging

The persons adopting EV in the representative French and German mobility studies are assigned reference
date specific mobility profiles. We assume that the mobility patterns of car usage remain constant as long as
the range of the EV is sufficient for the trip lengths. If the pure electric range is not sufficient, we assume
that the EV are equipped with combustion engine driven range extenders. We assume the same car usage
behavior on every day of the simulation and a 1:1 relation between EV adopters and EV. As vehicles park
most of the time at home or at the workplace [20], load shifting potentials are highest at these locations.
Therefore, we assume that EV adopters have the possibility to charge their cars at home and at work.
Combining driving and parking profiles with assumptions on EV energy consumption, battery capacity and
available charging power, allows to determine the energy requirement and the load shifting potential of each
charging process [21-23].

A charging event x (Figure 1) can be described as follows: After arriving at a charging station at time t277val
with a state of charge (SoC) of SoC#™a the EV is directly charged up to a SoC level determined by
individual minimum range (MR) requirements SoCMR. Starting from this point in time (t£¢), charging event
specific load shifting potentials At%S? provided by EV users can be used by service providers (aggregators)

for flexible controlled charging (CC). At the point in time of departure t2?%"*“™ the SoC is at SoCP4"""®,

SoCy 1
So C;ieparture__ .....
SOCMR Lo Potential for

val Y optimization

arriva

SoCy 1 AtESP
T I

arrival cc
tx tx tdepurture

X

Figure 1: EV charging event x with load shifting potentials

Plug-in times At}c’l“g specific to charging event x are calculated by subtracting arrival time from departure
time (cf. equation 2).

plug _ ,departure arrival
AP = ¢ . )

Active charging times At2<tive are determined by dividing the energy charged (SoCZeP* "¢ — Socarrival)
by the maximum charging power P{*%* of a charging event (cf. equation 3).

departure arrival
C, — SoCy

@)

active _—
Atgetive =

max
Py

Load shifting potentials At%S? are calculated by subtracting active charging times At3¢t¢ from plug-in times
(equation 4).

AtLSP = AtPMI _ ppactive 4

Total energy charged Et°t% is calculated by adding the energy charged of the single charging events
(equation 5).
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d .
Etotal — Z(Socx eparture __ SOCgrrwal) (5)

XEX
Total energy directly charged E4i¢¢t is calculated by adding the energy directly charged of the single
charging events (equation 6).
Edirect = z Max{SoCy'® — SoCFT™; 0} - 11y 15p5

xXeX (6)
+ z (SoCyePUTtHTe — Socgrivaly . 1 usp oy

X€EX

Total energy flexibly charged (controlled charging) E/'* is calculated by subtracting E¢Te¢t from Etotal
(equation 7).

Eflex — ptotal _ pdirect (7)

3 Results and discussion

Section 3.1 describes the EV diffusion scenarios developed for the French and German market intending to
provide an answer to RQ1. Section 3.2 presents the simulation results of EV charging and compares the
effects of the re-sampling method applied (Method 2) on the results in order to provide an answer to RQ2
and RQs3.

3.1 EV diffusion and adoption

The Bass diffusion models used to project the future EV stock are estimated based on the data presented in
Table 1.

Table 1: Data used for diffusion model estimation

EV stock France Germany

End 2009 - 3032

End 2010 3368 4404

End 2011 6167 8670

End 2012 12,805 13,582

End 2013 22,217 [24] 23,208 [25]
End 2014 33,595 36,175

End 2015 54,282 48,688

End 2016 79,856 54,997

Mid 2017 [1] 101,799 92,731
Expectation 2030 6,000,000 [26] 6,000,000 [27]
Total vehicle stock (M)?* 32,675,972 [24] 45,803,560 [25]

The French public authorities' expectations of six million EV in 2030 [26] are in line with the government
targets set in Germany [27]. These expectations are taken into account in the scenario calculations resulting
in the Bass diffusion model parameters shown in Table 2.

These two EV diffusion scenarios are rather optimistic scenarios. The innovation coefficient (p) of the French
EV diffusion scenario is considerably higher compared to the German’s (cf. Table 2). However, imitation
coefficients (q) are on a similar level. According to Figure 2 the models’ forecasts of EV stock are well below
the original national policy targets in France (2 mn in 2020 and 4.5 mn in 2025, [28]) and Germany (1 mn

[27]).

Based on historical new registrations for 39 countries, innovation and imitation coefficients of Bass diffusion
models have been estimated by [29] (France: p = 1-10* and q = 0.4; Germany: p = 2.5-10° and g = 0.5). The
innovation coefficients for Germany and France in our results are somewhat higher (France: p = 1.44-10%;
Germany p = 4.31-10°®), but relatively low in comparison to other common innovation coefficients averaging
p =0.03 [29, 30]. The estimated imitation coefficients are slightly below the average of q = 0.38 [29, 30]

! Please consider that new developments in the context of car sharing and autonomous vehicles might result
in an overall lower future vehicle stock.
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(France: g = 0.31; Germany: q = 0.32), but are comparable with other innovations [30]. Differences could be
due to the fact that only sales figures of zero emission EV were included in [29], but all types of plug-in EV
are considered in our study.

Table 2: Bass diffusion model parameters

Parameter France Germany
M SD M SD
p 431-107° 2.67-1075 1.44-10"* 1.82-10°°
q 0.32 0.004 0.31 0.0015
b 2008.22 5.82 2010.01 1.05
M 32,675,972 45,803,560
R? ~1 ~1

To answer the question of who adopts EV in France and Germany, we identify persons adopting EV in
representative mobility data sets [19, 20]. The mobility studies Mobilitat in Deutschland (MiD 2008) and the
Enquéte nationale transports et déplacements (ENTD 2008) contain information on mobility behavior as
well as on the households surveyed, the individuals living there, their distances travelled and corresponding
vehicles used.

EV adoption probabilities are assigned to the persons interviewed in the national mobility studies using the
binary logistic EV adoption model as described in Section 2.1. The higher the probability of EV adoption,
the earlier these persons are assumed to adopt EV.

The two different methods (Methods 1 and 2) are subsequently applied in order to obtain the original and the
reduced EV adopter samples. Exemplary results are shown in Figure 2.

6 77 Year 2030
& Original sample: 5115 (FR) , 4864 (GER)
5 i | Reduced sample: 1000 (FR & GER)
——France German ' scaling _ scaling _
4 Y ' 2030,FR — 50692’ n2030,GER =4.3177
Year 2025:

Original sample: 1396 (FR), 1133 (GER)
Reduced sample: 1000 (FR & GER)

Ii Ii
Moogs e = 1.7431, 500575 - = 1.1817

EV stock [in mn]
w

1
: . Year 2020:
0 _— ; i | Original sample £ reduced sample: 356
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 (FR),243(GER)
scaling __ 1: scaling =1
Year N2020,Fr = L1 M2020,66r =

Figure 2: EV diffusion scenarios for France and Germany

3.2 EV charging

For the simulation of charging behavior, we assume that EV are charged at home and at work. Information
on charging behavior and corresponding load shifting potentials is derived from the information on the
distances travelled, consumption assumptions (0.2 kWh/km), assumed charging power (3.7 kW), battery size
(60 kwWh) and minimum range? (100 km). With these simple assumptions, we intend to make the results as
transparent as possible. In addition to that, corresponding effects of varying these parameters are evaluated
by conducting sensitivity analyses (Figure 5).

Of the 6 mn individuals adopting EV in France and Germany, 5.5 mn of the German adopters represented by
4487 data records and 5.9 of the French adopters represented by 4942 data records charge their EV at home
or at the workplace on the reference day. The 5.5 mn German adopters charging at home or at the workplace

2 Minimum range represents the minimum range requested by customers that will always be recharged
instantaneously after plugging-in an EV for charging.
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charge their EV in 10.4 mn charging processes and the 5.9 mn French EV adopters during 12.2 mn charging
processes. Hence, in the scenario considered (EV can be charged at home and at the workplace) on average
EV users charge twice per day. Plug-in times, active charging times, load shifting potentials and the energy
charged only differ slightly between France and Germany (cf. Table 3). In case vehicles are not parked at

home or at work, they are not charged.

Table 3: Charging behavior in different scenarios considered

France Germany
Original Reduced Original Reduced
sample sample sample sample
EV adopters charging in sample 4942 967 4487 930
Represented number of EV adopters charging| 5.9 mn 6.0 mn 5.5 mn 5.1 mn
Charging events of sampled EV adopters 8873 1700 8590 1756
Represented charging events 11.8 mn 12.2 mn 10.4 mn 9.5mn
P M 10.36 h 9.94 h 9.93h 10.59 h
P'“ft;,rl'ut;,me SD 723h | 7.76h | 7.75h | 7.24n
x MED 9.67 h 11.64 h 11.42 h 9.58 h
Active charging M 156 h 1.35h 1.39h 1.70 h
time Agactive SD 2.18h 2.32h 2.39h 2.19h
* MED 0.82h 0.77 h 0.79h 0.82h
Load shifting M 8.80 h 8.59h 8.53h 8.88h
ootential AcLS? SD 7.12h 7.59 h 758 h 7.16 h
* MED 7.81h 9.09h 8.66 h 7.89h
Energy charged M 577 kWh | 4.99 kWh | 5.15 kWh | 6.31 kWh
per charging event SD 8.07 kWh | 8.60 kWh | 8.86 kWh | 8.12 kWh
MED 3.04 kWh | 2.84 kWh | 2.92 kWh | 3.04 kWh
Total energy charged per day E*°t® 60.82 GWh | 60.82 GWh | 59.96 GWh | 59.96 GWh
Total energy directly charged per day E4e¢t| 1.65 GWh | 2.26 GWh | 2.06 GWh | 2.92 GWh
Total energy flexibly charged per day E/*¢* | 59.16 GWh | 58.56 GWh | 57.90 GWh | 57.04 GWh

Total energy charged per day represents the energy charged for the pure electric mileage of the EV adopters
simulated. l.e. an increase of the charging power or the range specific parameter potentially results in an
increase of the total energy charged per day. Our sensitivity analyses towards the end of this section show
the effects of varying input parameters on total energy charged and total energy flexibly charged.

6

0 1 2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour of day [in h]

Average hourly cumulated EV load [in GW]

I GER deviation
GER original sample (Method 1)
GER reduced sample (Method 2)

I FR deviation
—— FR original sample (Method 1)
FR reduced sample (Method 2)

Figure 3: Average hourly cumulated EV load of original and reduced sample directly charging in 2030
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1000 EV adopters are considered in the reduced sample. 967 of the sampled French adopters representing
6.0 mn EV adopters and 930 of the German adopters representing 5.1 mn EV adopters are charging in this
case. Slight deviations can be observed between the reduced and the original samples concerning all of the
parameters considered, with the exception of the total energy charged (cf. Table 3). The most unfortunate
deviation occurs in total weighted EV adoptions, virtually adding or removing hundreds of thousands of EV
adopters from the population. Deviations originate in the re-sampling method (Method 2), where only every
other EV adopter is picked (reduced sample). E.qg. this results in differences observable concerning total
energy directly charged per day. However, as we focus on adequately representing the aggregated energy
demand of the national EV fleet, we accept these deviations. As computing time of our scheduling algorithm
scales linearly with the exponentially growing number of adopter records, corresponding reductions of
computing times outweigh the drawbacks of these approximations. Reducing the sample size results in
savings in computing time of about 85 % in the year 2030.

Figure 3 visualizes the deviations of the hourly cumulated charging demand in 2030 for the two markets in
the direct charging scenario. Deviations between the reduced and the original samples are visually
observable, but average out over the day.

Figure 4 visualizes the cumulated French and German EV load profiles. The load profile of direct EV
charging and the variations in the profiles of flexible, i.e. controlled charging. The distributions of the
charging profiles in France and Germany look quite similar. In both countries, load peaks of 12 GW can be
observed and EV specific loads are shifted into nighttime and noon hours due to lower day-ahead market
prices in these hours. Evening peaks when directly charging seem to be higher in France.

France
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©
©
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>
w
©
(9]
©
=]
€
=}
O
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour of day [in h]
Germany
= 12
©
< 10
T 8
o
> 6
2 4
© .
=} — —
2 2 e e e o —
3 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour of day [in h]
min 2% 5%
@ median 95% 98%
max — average direct charging (median)

Figure 4: Cumulated EV load of direct and controlled charging in France and Germany in 2030

These results are based on the assumptions presented in Section 3.2 and define a base case (3.7 KW charging
power, 60 kWh battery capacity, 100 km minimum range). In the following, we conduct sensitivity analyses
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in order to analyze the effects of parameter variation on total energy charged and total energy flexibly
charged. The results presented in Figure 5 show that electric mileage increases with increasing battery
capacities. However, it seems that with battery capacities of 60 kWh a certain saturation level concerning
full electric mileage when charging with 3.7 kW is reached (Figure 5, left hand side). Further increasing
charging power results in further increasing the share of full electric mileage (Figure 5, right hand side). In
our simulations, sensitivities concerning effects of charging power on electric mileage seem to be slightly
higher in Germany. Furthermore, battery capacity variation affects the total energy flexibly charged during
a day. A certain saturation level is reached when battery capacities reach 80 kWh (133 %). As with total
energy charged, total energy flexibly charged can be increased by increasing charging power (Figure 5, left
hand side). Increasing minimum range thresholds result in a reduction of total energy flexibly charged,
although seemingly to a lesser degree than variations to battery capacity.

64 64
= =
) Z 62
3 o
< 60 2 60
=
c% 58 O 58
£ .E,
@n 56 ?B 56
£ 25
& &
g 52 E 52
50 50
33% 66% 100% 133% 166% 3,7 kW 11 kW 22 kW
Parameter variation Charging power

----- Total energy charged, battery capacity

variation (GERR) T Total energy charged, charging

----- Total energy charged, battery capacity power variation (GER)
variaton(]PR)  T=== Total energy charged, charging

Total energy flexibly charged, battery power variation (FR)
capacity variation (GER) Total energy flexibly charged,

Total energy flexibly charged, battery charging power variation (GER)
capacity variation (FR) Total energy flexibly charged,
......... Total energy flexibly charged, charging power variation (FR)

minimum range variation (GER)
--------- Total energy flexibly charged,

minimum range variation (FR)

Figure 5: Sensitivity analysis concerning total energy charged and total energy flexibly charged, depending on varying
battery capacity, minimum range and charging power. Base case: Charging with 3.7 kW, 60 kWh battery capacity and
100 km minimum range

4 Conclusion and outlook

We use a hybrid EV diffusion model in this study, i.e. we combine a bottom-up and a top-down approach
[31]. Such modelling approaches are recommended by various studies on market developments of car
ownership [31-34]. Not only personal preferences influence adoption decisions, but also macro-economic
parameters. In particular, better designs of interfaces between models and surveys could lead to an
improvement of EV penetration models [35]. First studies address this [36]. Disaggregated survey data enable
forecasts of potential future market developments already in early market phases [31] and enable the analysis
of effects of varying input parameters on market developments [36]. EV penetration models based on
aggregated data, on the other hand, are suitable for medium- to long-term forecasts, as long as a sufficient
amount of market development data is available [31].

As suggested by [31], the model presented in this study takes into account economic and social (based on the
bottom-up binary logistic modelling approach) as well as market development information (based on the top-
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down Bass diffusion model). By applying the binary logistic model to representative mobility studies, EV
adoption and corresponding EV charging behavior is simulated for France and Germany.

The results of our analyses show that EV diffusion is more dynamic in France than in Germany. This finding
is in line with other studies [29]. With respect to EV adoption, our modelling approach identifies early EV
adopters within mobility data sets representative for France and Germany by applying a binary logistic
regression model based on stated preferences of EV users [18].

As these data sets include mobility behavior, car usage behavior in particular, we derive EV adopter specific
usage and charging behavior by assuming that all EV adopters use their own EV and that mobility behavior
remains the same, i.e. corresponding trips travelled with conventional cars are substituted by trips with EV.
In addition to that, we assume that EV users have the possibility to plug-in at work and at home and that EV
users indeed use this possibility. We compare the charging behavior derived from the EV adopters’ trip
profiles and cumulated EV specific load profiles of France and Germany. Slight differences in the simulated
charging behavior on a disaggregated level can be observed (e.g. overall more charging events in France).
Furthermore, slight differences on the aggregated level of cumulated EV specific load profiles are observable
(e.g. higher evening load peaks when directly charging EV in France). Future analyses could focus on
modelling EV charging behavior more realistically, e.g. based on observed behavior concerning plugging-in
EV.

Our re-sampling approach (Method 2) limiting the number of data records representing EV adopters and
corresponding charging events results in high gains concerning computing times. This results in new
possibilities of considering EV on a disaggregated level in energy system modelling, e.g. considering
different EV specific charging strategies in investment decisions of power plant operators and considering
EV specific effects throughout the whole simulation period in coupled wholesale electricity markets across
Europe. In prior work high computing times limited such analyses [21]. Future work could focus on applying
this advanced method of identifying EV specific load patterns to energy system models in order to analyze
potential future effects of EV charging on electric power systems.
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