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Summary 

The peaks in electricity demand for charging electric vehicles (EVs) correspond with the peaks of household 

electricity demand. As the number of EVs will increase, the demand for electricity at these peak moments 

will increase even further. Smart charging offers an alternative for avoiding these additional peak demands. 

Jedlix provides a smart charging service via an smartphone application whereby EV-owners allow Jedlix to 

charge their vehicles at ‘beneficial’ moments on the grid whereby there is abundance of renewable energy,  

and electricity prices are relatively low. ElaadNL has analysed a subset of Jedlix charging data from the 

period October 2017 – June 2018. This study provides novel insights regarding smart charging of EVs based 

on real data.  
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1 Introduction  

In 2018 the Dutch electric vehicle (EV) sales tripled compared to 2017. In total about 24,000 new EVs were 

sold. At the same time the share of EVs in total passenger vehicle sales increased to 6.5% [1]. Still, a small 

fraction of the Dutch vehicle fleet has been electrified yet but country’s ambition is to have about 2 million 

EVs on the road by 2030 [2].  

Adoption of electric vehicles (EVs) will have a direct impact on the electricity grids mainly due to additional 

power demand during current peak hours on the grid. For the Netherlands, previous studies have shown that 

an instant replacement of the current car fleet (non-EVs) by EVs and given the current mobility pattern will 

result to an increase of 23% in the total annual electricity demand. Furthermore, the peak load will even rise 

by up to 43% [3]. Majority of this demand will happen via the low-voltage (LV) grid connections (i.e. public 

and private charging points). Currently, in the national Climate Agreement the target is to increase the number 

of chargers up to 1.9 million in 2030 [2]. However, the LV has its limitations in terms of power flows and its 

capacity.  

A typical Dutch household has 3*25 Ampere (A) connection. So, in theory this connection type could deliver 

up to 17.3 kW but the current LV grid is built for a maximum capacity of 4 kW, and on average an household 

has an actual peak power demand of about 0.8 kW [4]. Recent studies have shown that EVs could increase 

this average peak demand between 1 – 2.8 kW depending on EV type [5]. So, it means that actual peak 

demand could potential more than threefold in the future. Higher adoption of EVs will potentially result in 

grid congestion problems in the network. Congestion occurs because the required distribution capacity 

surpasses the limits of the existing network [4]. 
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In some areas this grid congestion issue will happen earlier than other due to differences in the expected EV 

adoption rates, and the grid characteristics [6]. Smart charging of EVs offers an alternative for better 

managing and incorporating the additional electricity demand of EVs within the power system. Smart 

charging can be defined as follows; optimizing the charging session by alignment of time, speed, and charging 

method with the EV-owner’s preferences and given both electricity market and grid conditions.  

The concept of smart charging has been tested in several contexts and pilots. Results from most recent 

experimental projects confirm that controlled charging of EVs can work in practice both at public and home 

charging stations. Regarding smart charging at public chargers; the outcomes of a pilot project which took 

place in Amsterdam (FlexPower) show that on average charging rate of EVs was increased by 45% (from 

4.05 kW to 5.86 kW) outside peak hours while reducing the charging power during the peak moments [7].   

Preliminary results from one the largest smart charging projects (Electric Nation) which took place in the 

United Kingdom are also promising. Within the Electric Nation project about 700 EV-owners participated in 

pilot whereby they smart charge their EVs both at home. On weekdays one was able to reduce the charging 

rate by at least 25% (from 32A to 24A) per participant [8].    

The results of aforementioned pilots are relevant but they do not ‘represent’ realistic smart charging behaviour 

due to the fact that smart charging happens within the context of trial. Jedlix is one of the few commercially 

available smart charging services whereby the EV-owners voluntarily install the app to charge their vehicles 

on ‘beneficial’ moment of day. The main objective of this research is to provide insights in the charging 

behaviour of EV-owners based real smart charging data which are collected via the Jedlix app. Furthermore, 

we aim to look at wide perspective and implications of smart charging based on the observed patterns from 

the historic data.   

2 Dataset and Methodology 

In this paragraph we describe the background of the input dataset, and the methods we applied to analyse the 

data.   

2.1 Dataset structure  

Table 1 includes an overview of data fields which have been used in this study.  

 

Table 1: Overview of input dataset 

Variable Description: 

User id Hashed (anonymised) string which represent the EV user 

Brand Brand of the EV 

Model Model of the EV 

Location type Location where transaction took place (Home or other location) 

Charging mode Charging mode of transaction (AC or DC) 

Transaction type Type of transaction (Smart or Regular) 

Transaction id Unique transaction id 

Start time Start datetime of the transaction 

End time End datetime of the transaction 

Duration Duration of connection time  

Energy demand Total energy transfer per transaction 

Power demand (maximum) Power demand (maximum) per transaction 

SoC at arrival  SoC at arrival of the EV 
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2.2 Methods  

In this study we have analysed one of this first EV smart charging dataset based on real charging events at 

home and public and semi-public charging points. The main input data is an anonymised set of more than 

10,000 detailed charging sessions. The dataset includes the complete charging records per user. So, due to 

the quality and the variety of the dataset we are able to analyse the charging behaviour of the EV-owners by 

quantifying multiple indicators. This research mainly applies an exploratory data analysis approach to 

describe the charging behaviour of EVs. Table 1 includes a short description of the seven indicators which 

are being quantified in this research.  

Table 2: Overview of indicators 

Indicator: Description: 

Connection time Time of arrival of EV at the charging station. 

Connection duration The duration of the total plug time of EV at the station. 

Energy demand The volume of energy consumption per charging session. 

Charging frequency The number of charging sessions per unit of time (in this case per week). 

State of Charge (SoC) The initial state of charge at the start of connection time.  

Charging curve The charging rate of EV per SoC level. 

Smart charging In this case the impact of coordinated charging is measured by a comparison of 

energy demand within smart charging profiles versus non-smart charging profiles 

at certain time of day.   

3 Results  

This section contains the empirical results per defined indicator.   

3.1 General characteristics  

The main input dataset for this paper includes an anonymized charging details records of 140 different EV-

owners whom are using the Jedlix application for charging their vehicles. Furthermore, all vehicles types are 

full electric passenger cars.   

The data covers all charging sessions that took place in the year 2018 from this randomly selected EV owners. 

Based on this data we have analyzed the charging behaviour of the group by looking at the following 

indicators; connection duration, charging time, energy demand, power demand, state of charge, and charging 

frequency. In addition, also the impact of smart charging has been quantified based on real charging events. 

Finally, the results of this analysis have been validated by the overall charging behaviour of all Jedlix users.    

In general, the charging events in the dataset can be divided into two different type of sessions;  

Group A; Smart charging sessions (69% of the total records in the dataset); within these events the EV-owner 

choses for the default charging option of the Jedlix app which is smart charging.  

Group B; Regular charging sessions (31%); within these charging events the EV-owner clicks on the 

‘override’ button and selects for the option to charge the EV battery directly at start of the connection to a 

charging point.    

 

Figure 1 shows the decomposition of the both types of charging events per month. From the figure we can 

observe that the share of smart charging sessions is steadily increasing from 62% in November of 2017 to 

74% in June of 2018. Most probably, this is the result of getting better understanding of charging process, 

and more familiar to the Jedlix app by the users.  
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Figure 1: Transaction per month1 

3.2 Connection time 

Primarily, we have looked at the connection times of the sessions. So, we have quantified on which moment 

of the day the EVs are connected to charging points. Jedlix users can use the app at different locations. 

The analysed charging sessions come from three location categories;  

A. Home chargers; these are private charging points which are usually installed at EV-owner’s 

dwellings. This category of charges are regular AC charging with maximum power supply of about 

17.3 kW. About 54.4% of all charging records in the analysed dataset took place at home chargers.  

B. Other locations; these are public and semi-public AC chargers. More than 36% of the charging 

sessions in the dataset have happened at this type of chargers.   

C. Fast chargers; a small portion of the charging sessions belong to the category DC fast chargers 

whereby one can charge with rates from 50 kW. About 1,000 of charging sessions (9.2%) took place 

at DC chargers.   

      

The figure below includes the distribution of charging session per location type based on their arrival time at 

the charging points. Within the first category of chargers (home chargers) we can observe a peak in the 

arrivals between 6 – 7 PM. Looking at the arrival times within the second category (other locations), we can 

see that about 22% of the sessions start around 9 AM at this type of chargers. There is a rational explanation 

behind this peak of arrivals in the morning because this category of chargers represent typical ‘workplace’ 

charging behaviour. Furthermore, the charging sessions at fast chargers happen during entire day with a minor 

peak around 3 PM.   

 

                                                        
1 For the months of October 2017 and June 2018, the dataset contains fewer charging sessions because the analysed set 

does not cover the entire charging records of selected EV-owners for both months. 



 

EVS32       

5 

 

Figure 2: Distribution of arrival times 

3.3 Connection duration  

Secondly, we have looked into sessions duration; how long the EVs stay connected at the chargers per 

charging event. Figure 3 includes distribution of connection duration per location type. The majority of 

sessions (76.4%) at home chargers have durations more than 8 hours. In contrast, within the second category 

of chargers  (other locations) less than 49% of the sessions have a duration of at least 8 hours. Thus, the share 

of longer lasting charging events is higher within the home charging sessions. In the category, the majority 

of charging sessions (about 70%) have duration of less than 2 hours.              

 

Figure 3: Distribution of session's duration 

3.4 Energy demand  

As third indicator, we have analysed the energy demand per charging session. Figure 4 depicts the distribution 

of energy consumption per session at each location type. Due to the fact that all charging session belong to 

full electric vehicles with high battery capacity, we can see that per charging event high volumes of energy 

is being delivered from stations into EVs. 



 

EVS32       

6 

Within the majority of the charging sessions at home, and other chargers (respectively 58%, and 63%) the 

energy demand is less than 32 kWh per event. The charging sessions at fast charging locations require more 

energy; about 62% of charging events consume energy volumes of at least 32 kWh.     

 

Figure 4: Distribution of energy demand 

 

3.5 Charging frequency  

In this analyses, we have also quantified how many times the EV-owners charge their vehicle per week. 

Figure 5 visualizes how many charging events on average (orange dot) each EV has per week, regardless of 

the charging event’s location. Furthermore, beside the average indicator we have also looked in the standard 

deviation (vertical line) of charging frequency per week. On average each EV-owner plugs in the vehicle 

about 4 times per week for recharging the battery with an average standard deviation of about 2 charging 

sessions per week.      

 

Figure 5: Distribution of charging frequency 
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3.6 State of Charge  

The energy demand per charging event is partly determined by the state of charge (SoC) level of the battery 

at the start of a charging session. Figure 6 illustrates the average, and the standard deviation of SoC level at 

the time of arrival per location type. Within the first two category of chargers (home, and other locations), 

we can see that the EV batteries are half full (with standard deviation of +/- 25%) at the time that EVs are 

connected for a recharge. Furthermore, from the dataset we observe that the mean SoC level is about 38% 

for sessions at fast chargers with standard deviation of 19%. In general, we can conclude that the EV-owners 

do not postpone the charging of the their vehicles till the battery is full empty (low SoC).      

 

 

Figure 6: Initial SoC level per location type 

 

3.7 Charging curves  

The input dataset for this analyses also includes the intermediate meter readings within each sessions. Hence, 

it also possible to look into the charging curves of EVs; the charging rates at each SoC level. Figure 7 shows 

the average charging profile at AC chargers (home, and other locations). So, in the graph we depict the 

charging power (vertical axis) against the SoC (horizontal axis) with an interval of 5%. Additionally, also the 

standard deviation in charging rate is added per SoC interval. Finally, also the number of charging events per 

SoC interval measurement (gray points) are included. This latest variable can be seen as a proxy for reliability 

of the charging profile. By adding this feature, we can notice that in some cased the average charging rates 

is based on data from 250 different charging sessions while in other cases the average charging power derived 

from measurements of 6,000 different charging events.       

In general, one can observe that the mean charging power will start decrease rapidly from 75% SoC level. 

This decrease in the charging rate has two main causes. First, in the data we can notice that every EV model 

has a slightly different charging curve. Second, although all charging events happen at AC chargers, it can be 

the case that different chargers have their own characteristics in terms of maximum power capacity, and 

allocation of power in case of dual charging (both socket are occupied at the same time).      
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Figure 7: Charging curve 

3.8 Smart Charging  

Finally, we have quantified the impact of smart charging. As stated earlier, the dataset included two type of 

transactions; smart, and regular events. In order to measure the impact of smart charging versus regular 

charging we have selected 1,000 random charging events from each type. The transactions are selected from 

the same period; April, and May 2018. This filter has been applied in order to omit any weather related 

influences on the comparison. Within this period of two month we have summarised the total energy demand 

per group of transaction on hourly bases. The outcome of this aggregated profile is included in figure 8. 
 

 

Figure 8: Impact of smart charging 

Overall, from the figure we can see that the smart charging sessions demand less energy during in the 

morning, and in the evening peak. Furthermore, from the graph it is also visible that the total energy demand 

of smart charging events shift to nightly hours. Focusing on the evening peak (between 18:00 – 21:00), we 

can conclude that smart charging results in 47% lower energy demand compared to regular charging. Based 

on this outcome we can assume that within the context of Jedlix optimization, smart charging results in lower 

evening peak on the LV electricity grid. In figure 9 we put this outcome in perspective by comparing the 

energy consumption for each type of transaction with the average electricity demand of households in the 
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Netherlands [9]. We have normalized the energy demand from each consumption type in order to make the 

comparison possible. Furthermore, we have stacked the lines for EV charging types to indicate the increase 

in household consumption in both charging types. Focusing on the evening peak (between 6 and 9 PM) we 

notice that within the regular charging transactions the total demand (EV + household) increase more than 

100% comparing to average household demand which is assumed as the baseline here. With smart charging 

there is an increase of about 45% comparing to household demand during the evening peak. Thus, from this 

observation we can assume that smart charging results in less higher peaks during the evening peak.        
 

 

Figure 9: Comparison of household demand and EV demand 

4 Conclusion and discussion  

This research aims to describe the charging behaviour of EV-owners participating in smart charging via the 

following indicators; connection times, connection duration, energy demand, charging frequency, state of 

charge of EVs, charging profiles, and the impact of smart charging. The results of this analysis seem 

promising for avoiding peak demand of electricity at the LV grid via smart charging of EVs. 

The results of this explanatory analysis can be summarised as follows;  

- The analysed dataset includes mainly smart charging sessions (69 %). 

- On average each EV-owner has a charging frequency of about 4 times per week.  

- It stands out that the majority of the EVs start with new sessions at relatively high SoC (about 50%).   

- From the AC charging curves we can observe a slight decrease in the charging rate from 75% SoC. 

- Based on the analyses that we can indeed confirm that EV-owners go for fast charging at lower levels 

of SoC, compared initial SoC within regular AC charging sessions. 

- From a comparison of 1,000 randomly selected smart charging events with 1,000 regular sessions 

appears that between 6 – 9 PM (evening peak) the smart charging sessions energy demand is 47% 

lower compared to the energy consumption of regular charging. Based on this sample, smart 

charging seems to omit significant increase in electricity demand of household during the evening 

peak.  
 

In general, the outcomes of this study show that smart charging can be a ‘effective’ instrument in order to 

prevent higher peak demand on the LV grid. However, these results are based on usage pattern of selected 

group of EV owners whereby they posses over EVs with high battery capacity, and relatively high willingness 

to allow smart charging of their vehicles. In order to generalise these results more observations from broader 

type of EV-owners is needed within different smart charging conditions. Also, the impact newly created peaks 

on the LV grid should be investigated, and how the national electricity demand profile will be shaped once 

he charging of large volume of EVs is optimized based on certain target (e.g. grid congestion or low electricity 
price).   
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