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Abstract

This paper proposes a new co-design optimization framework for the powertrain sizing and control pa-
rameters of Plug-In Hybrid Electric Buses (PHEB). The PHEB must have the lowest powertrain Total
Cost of Ownership (pTCO) while respecting a set of dynamic performances and lowering the fuel con-
sumption as much as possible. Previous works have addressed the problem of powertrain sizing or control
strategies independently but have failed to combine them in a multilevel system for heavy duty vehicles.
In this paper, the energy management strategy is nested within the plant design to create a co-design
system-level in which the controller is optimized using the Equivalent Consumption Minimization Strat-
egy (ECMS) and the sizing of powertrain. Components are optimized using a Genetic Algorithm (GA).
The GA implemented in Matlab performed simulations on a parallel configuration of PHEB simulated in
Simulink, in which the power sharing factor was chosen according to the ECMS implemented in Matlab.
The proposed co-design optimization successfully achieved better results than the conventional brute
force search and proves that, compared to conventional Internal Combustion Engine (ICE) buses, PHEB
manage to reduce both the consumption and the pTCO while meeting the same driving requirements.

Keywords: co-design, equivalent consumption minimization strategy, genetic algorithm, powertrain total
cost of ownership, plug-in hybrid buses

1 Introduction

The road transport has a negative impact on the environment. The emissions released by the combustion
of fossil fuels (i.e. diesel and gasoline) in the conventional vehicle using an Internal Combustion Engine
(ICE) have a significant impact on air pollution. Heavy-Duty Vehicles (HDV) are responsible for 30%
of on-road CO2 emissions in Europe while representing only 4% of the road sector activities [1]. Im-
provement in fuel consumption of HDV will have a big impact on the pollution problem that the world
1s facing today.

Among all possible new energy vehicles, there is a trend for the electrification and more precisely for the
Hybrid Electric Vehicles (HEV) in the short term. The HEV became one of the most promising solutions
by combining the advantages of the ICE and the Electric Motor (EM). Combining both EM and ICE
into HEV allows a long driving cycle, good power performances, a convenient refueling, low emissions
and noise [2], a downsizing of the engine, a braking energy recovery, a shut off of the engine during
standstill, and an increase of the efficiency [3]. Moreover, the Plug-in Hybrid Electric Vehicles (PHEV)
contain a battery that can be charged by using the excess engine power, but also by plugging it into the
grid. To be cost and fuel efficient and to respect the dynamic performances, the Plug-in Hybrid Electric
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Buses (PHEB) need to be well designed and controlled. It is therefore important to optimize the pow-
ertrain parameters as well as the control parameters using a driving cycle corresponding to a Transport
Assignment (TA).

The optimal design of a hybrid electric vehicle is a multiobjective optimization problem [4]. The topol-
ogy, size and control are dependant parameters and cannot be optimized sequentially otherwise the so-
lution would be sub-optimal [5]. These dependant parameters therefore form a multi-level problem that
can be solved using system-level design. The review in [4] presents three different architectures for the
system-level design of plant and control design as shown in Figure 1.

Alternating Nested Simultaneous
Plant Plant
Design Design
'y Plant and

1 T Control

x Design

Control Control

Design Design

Figure 1: Architecture for System-Level Design in HEV [4]

The plant optimization consists of finding the best size for the battery, EM and ICE, to minimize an objec-
tive function while ensuring some performance requirements. In literature, the derivative free algorithms
are widely used for plant optimization. These algorithms consists of Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), Simulated Annealing (SA) [12] and Divided Rectangular (DIRECT) [13].
Comparisons between these algorithm can be found in [14]- [16]. GA is widely used in the field of
hybrid vehicles.

In the literature, the researches about control optimization nested within plant optimization are very lim-
ited. Many papers only consider one driving cycle without taking the whole transport assignment into
account. Moreover, in plant design optimization, a simple RB EMS is usually used and the objective
function only focuses on fuel consumption or emissions, without considering the investment cost or op-
erational cost. This paper proposes a co-design framework combining plant and control optimization for
PHEB. The goal is to minimize the powertrain Total Cost of Ownership (pTCO) while meeting a set of
performance constraints. Here, the tPTCO consists of the components costs and the operational costs. On
top of that, the fuel consumption of the proposed PHEB should also be minimized.

This paper is organized as follows: Section 2 will develop the PHEB implementation and the proposed
co-design optimization. Then, Section 3 will provide results and compare them to the brute force search
results. Finally, Section 4 will provide conclusions based on the results obtained.

2 Proposed co-design optimization framework

2.1 Co-design optimization framework

The simulation and co-design will be implemented in Matlab and Simulink. The main idea of the pro-
posed framework is presented in Figure 2.

The proposed co-design framework is a control design nested within plant design. Being more efficient
than a sequential design, it is suitable for the plant and control optimization. Genetic algorithm is used to
find the optimal size of the EM, ICE and battery by minimizing the pTCO (component cost + operational
cost). For every new combination of EM, ICE and battery, the simulation is performed over a certain
distance using the related transport assignment. During this simulation, the requested power is split

Pry
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ECMS that will minimize the total equivalent consumption at every time instance of the driving cycle.

between the EM and the ICE using a sharing factor A = . This A is calculated using the
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Figure 2: Proposed co-design optimization framework

2.2 Fitness function

The objective function to minimize in this process is the pTCO which is the combination of the compo-
nents cost (Capital Expenditure (CAPEX)) and the operational cost (Operational Expenditure (OPEX)).
These costs only concern the engine, the motor, the battery and the inverter without taking into account
all the other costs related to the other components of the bus. It is a simplified representation of an eco-
nomic function. A penalty function is applied to this powertrain cost if the performance requirements
are not met. This is an efficient way to take the constraints into account. The fitness function (J[€]) is

defined by
J=CAPEX + OPEX + penalty (1)
In which CAPEX and OPEX can be calculated by
CAPEX =Cp-Qp+ Picr - Qioe + Pp - (Qp + Qinv) (2)
OPEX = BATT,¢p + ELECype + FUELy;fe 3)

In (2), Cp [kWh] is the battery pack capacity. () is the specified component cost expressed in [€/kW]
for ICE (IC'E), EM (FE) and inverter (/ NV) and in [€/kWh] for the battery (B). P;cr and Pgp are
respectively the nominal power of the ICE and the EM expressed in [kW]. In (3), BATT,. represents

the battery replacement cost, ELECY; . is the electric cost over the full vehicle lifetime and FUELy; ¢
is the fuel cost over the full vehicle lifetime.

The penalty function is used to take the driving performance requirements into account. The first re-
quirement concerns the battery capacity. The vehicle needs to have an All Electric Range (AER) of 30
km on the SORT cycle (explained in Section III). To fulfill this requirement, the battery State of Charge
(SoC) needs to be above its minimal value (20%) at the end of this AER period. The other requirements
concern accelerations ability in hybrid, electric and ICE mode, and are detailed in Table 1.

Table 1: Driving performance requirements

Mode | Spedd [km/h] | Time [s]

Electric 0-20 7
0-50 20
Engine 0-15 7
0-40 20
Hybrid 0-20 10
0-50 26

2.3 Powertrain description

This paper focuses on a parallel hybrid configuration presented in Figure 3. This configuration allows
the use of the EM and the ICE either combined or separately. This configuration allows a size reduction
of the ICE and the EM since for high power demands, the power can be split between the two power
sources.
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Figure 3: Parallel hybrid configuration [17]

The electric power consumed and generated are obtained using respectively (4) and (5) depending on the
current direction.

Tiny -

Pjop = —EMEM discharging mode 4)
nEM

Peiee =1 TeEM - WEM charging mode 5)

Where ngy is the efficiency of the electric motor computed using the efficiency map, Trps [Nm] is the
achievable torque provided by the EM, and wgjs [rad/s] is the rotation speed of the EM.

The power delivered by the fuel combustion is expressed as

Pfuel =1m- LHVfuel (6)

in which m [kg/s] is the fuel mass flow obtained by a look-up table which depends on the required torque
and the rotation speed of the engine (T7cg and wicg). LH Ve [J/kg] is the fuel lower heating value.

The vehicle environment is used to model all the external forces acting on the vehicle such as the wind,
the slope of the road and the friction. It takes as an input the combined torque of EM and ICE, adds all
the external forces and finally computes the total driving torque used for the vehicle acceleration. The
velocity is computed by

1
v = / E(thct — Faero — Frou — Fslope)dt ™

in which m[kg] is the vehicle mass, Fy;.qc¢[N] (8) is the combined tractive force of the ICE (Fr¢g) and
the EM (Fgnr), Faero[N] (9) is the resistive force due to the aerodynamic friction, F.,;;[N] (10) is the
rolling resistance due to the friction between the wheels and the road and Fslope[N] is the gravitational

force acting on the vehicle.

Firact = Fiog + Fem 3
02-Cnh- A
Faero = M—D (9)
2
Frou=Crr-m-g- COS(O&) (10)
Fsiope =m - g~ sin(a) (11)

In these equations, p is the density of air, v is the vehicle speed, C'p is the drag coefficient, A is the
frontal area, C,., is the rolling resistance coefﬁc1ent m is the mass of the vehicle, g is the grav1tat10na1
acceleratlon and « is the slope angle of the road which is assumed to be zero in the simulation.

2.4 ECMS control

The equivalent consumption minimization strategy is used as an on-line control for the energy manage-
ment system. The main idea is to solve an instantaneous optimization problem by minimizing a cost
function. This cost function takes into account the fuel consumption and the electrical energy variation.

The electrical energy variation is multiplied by an equivalence factor s(¢) that needs to be defined. The
cost function is be written as:

J = arg;nin(Pfuel(t) + 5(t) Ppatt (1)) (12)
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Where the control variable A represents the sharing factor used to distribute the requested power between
the ICE and the EM and is defined as follows:

TEM wheel

A= —F—— € [0, 1], for T, >0
Twheel [ ] wheel (13)

A=1, for Typheer < 0

The equivalence factor s(¢) depends on the battery SoC deviation and its equation is given by:
SoCrer — SoC(t
s(t):so+80-K-tan< Oref6 0 ()> (14)
T

in which sg is an average of suitable constants found from earlier simulation on a given driving cycle and
has a value of 2.4 for t%e SORT cycle. K is a gain used to adjust the weight given to the SoC deviation.
The division of the deviation by 67 is done to give more flexibility to the system in case of exceptional
environment such as big slopes, quick wind, high load, etc. The tangent function provides a good control
of the SoC trajectory and results in good fuel economy [18].

According to [19] and [20], a gradual discharge of the battery lowers the average discharge current which
leads to lower resistive losses. The reference SoC equation 1s written as follows:

tot

The basic principle of the ECMS control implemented in this paper is that, except for sg which is calcu-
lated once, a few steps are done in every time instance and make the power split decision based on the
power demand. An overview of these steps is listed:

1. A certain lambda is chosen: A € [0, 1]

2. The requested power at the wheels is split between ICE and EM (Prcr and Pgjs) using lambda.

3. Using the efficiency map with w and the requested torque, the power needed from the fuel and
from the battery is computed (Prye; and Ppgyy).

4. The cost function J is calculated using the equivalence factor s(t).

5. Steps 1 to 4 are repeated for every lambda

6. The best lambda is found when the cost function J is minimized.

On top of that, the constraints were taken into account using a set of IF-THEN rules. When the bus is
braking, lambda is set to 1 to use the regenerative braking and to charge the battery. If the SoC is smaller
than 20%, lambda is set to O to have an ICE only configuration and to avoid that the SoC goes below its
lower limit.

2.5 GA implementation

The idea of GA is to start with an initial population (P) composed of individuals (p;). Each individual
is characterized by genes (or chromosomes) which represents the design variables (battery capacity,
ICE size, EM size). Once the initial population is created, the model is run for each individual of the
population and the result is given by an objective function. The next generation has the same number
of individuals as the first population and is divided into three categories. The first category called elite
children is simply the best individuals from the previous generation that will stay in the next one. The
second and the third category, respectively called mutation and crossover are children from parents. The
parents are selected based on the optimization of the objective function. For crossover, children are
created by combining the genes of two parents and for mutation, children are created by making random
changes to a single parent. This new population replaces the previous one and the process is repeated
until one of the stopping criteria is met. The general principle of GA is illustrated in Figure 4.

The GA parameters consist of two different categories. The first one concerns the optimization variables

which are the component sizes and are bounded between their minimal and maximal values. The second

category represents the parameters of the GA itself such as the population size, the number of generation,

Ell}% iluglber of elite children and the crossover fraction. The parameters used in this paper are defined in
able 2.

In this configuration, the first generation is composed of an initial population of 30 individuals, each of
them characterized by 3 genes (the scaling parameters). The next generation will also be composed of
30 individuals from different types:
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Figure 4: General principle of GA [21]

Table 2: Genetic algorithm parameters

Parameter Value

min max
ICE maximum power [kW] | [14 355]
EM maximum power [kW] | [99 355]

Battery capacity [kWh] [50 150]
Population size 30
Number of generation 30
Number of elite children 1
Crossover fraction 0.75

e 1 Elite children
e 22 Crossover children

e 7 Mutation children

3 Technical assessment of co-design

3.1 The SORT cycle

The SORT cycle is the test consisting of defined acceleration and braking processes that simulates the
typical driving conditions on the road for a bus. Three different cycles are defined:

1. SORT 1: defined for heavy urban cycle with an average speed of 12 km/h.
2. SORT 2: defined for easy urban mixed cycle with an average speed of 18 km/h.

3. SORT 3: defined for easy urban cycle with an average speed of 25 km/h.

In this paper, the used cycle is a combination of these three cycles and is presented in Figure 5 with the
average speed of each cycle.

The transport assignment defined in this paper consists of 52 SORT cycles (= 150.38 km) during which
the battery SoC is decreasing and finally reaches its minimal value. Then, the battery is fully recharged
during the night at the charging station.
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The best fitness value over the generations is presented in Figure 6 and one can see that the
decreasing and converging to the optimal value after the 24" generation.
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The optimized size of the components is presented in Table 3 and the pTCO (CAPEX + OPEX) of this

configuration is pTCO = 275,231 €

Table 3: Optimized components size

Battery capacity

ICE maximum power

EM maximum power

72.72 kWh

130.02 kW

147.98 kW

The repartition of the requested torque between the ICE and the EM is presented in Figure 7 along with
the speed profile of the vehicle. The ECMS performed this torque repartition using the ECMS.

The linearly decreasing reference SoC and the real battery SoC is presented in Figure 8. The real battery

SoC is varying depending on the acceleration needed and on the regenerative braking.

3.3 Results of brute force search

The brute force search is used to compare and validate the results of the proposed co-design optimization.
The range of values for the brute force search are the same as presented in Table 2 for the ICE and EM
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size and for the batter capacit?/. For each parameters, the search space is divided in 8 as presented in
Table 4 which gives 512 possible combinations.

Table 4: Search space of brute force search

Parameter ‘ Possible values

Battery capacity [kWh] | [SO 64 79 93 107 121 136 150]
P, 0z of ICE [kW] [14 63 112 160 209 258 306 355]
Pror of EM [KW] [99 136 172 209 245 282 318 355]
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The minimal pTCO found using the brute force search is pTCO = 294,430 € with the parameters com-
bination presented in Table 5.

Table 5: Parameter combination that gives the minimal pTCO

Battery capacity | ICE maximum power | EM maximum power
64 kWh 160 kW 172 kW

3.4 Comparison between brute force search and co-design

The results of co-design optimization and brute force search is resumed in Table 6.

Table 6: Brute force search and co-design optimization results

Brute force search | co-design optimization | gain of co-design
Batt capacity [kWh] 64 72.72 +13.6%
Paz of ICE  [kW] 160 130.02 -18.7%
Paoz of EM [kW] 172 147.98 -14.0%
pTCO € 294 430 275 231 -6.5%

if the battery size found using co-design optimization is bigger than the one found using brute force
search, the pTCO is lower which proves the effectiveness of the proposed co-design optimization.

4 Conclusion

The co-design optimization framework for plug-in hybrid buses has been implemented and presented in
this paper. An optimal control ECMS nested within plant optimization design GA was proposed for the
co-design framework. The ECMS control was employed to reduce the equivalent consumption as much
as possible by optimally computing the power split ratio A. On top of that, the GA was used to design
the optimal sizing of the battery, EM and ICE with the objective of minimizing the pTCO cost while
respecting some driving requirements. These driving requirements were the main constraints concerning
EM and ICE size while the battery size was optimized by the reference state of charge for a 150 km total
driving distance. The proposed co-design optimization was able to find the global optimal solution given
the transport assignment and managed to have a lower pTCO than the brute force search. Finally, the
equivalent consumption was successfully lowered by using the ECMS.
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