

ELECTRIFYING BUS RAPID TRANSIT SYSTEM: A CANADIAN CASE STUDY

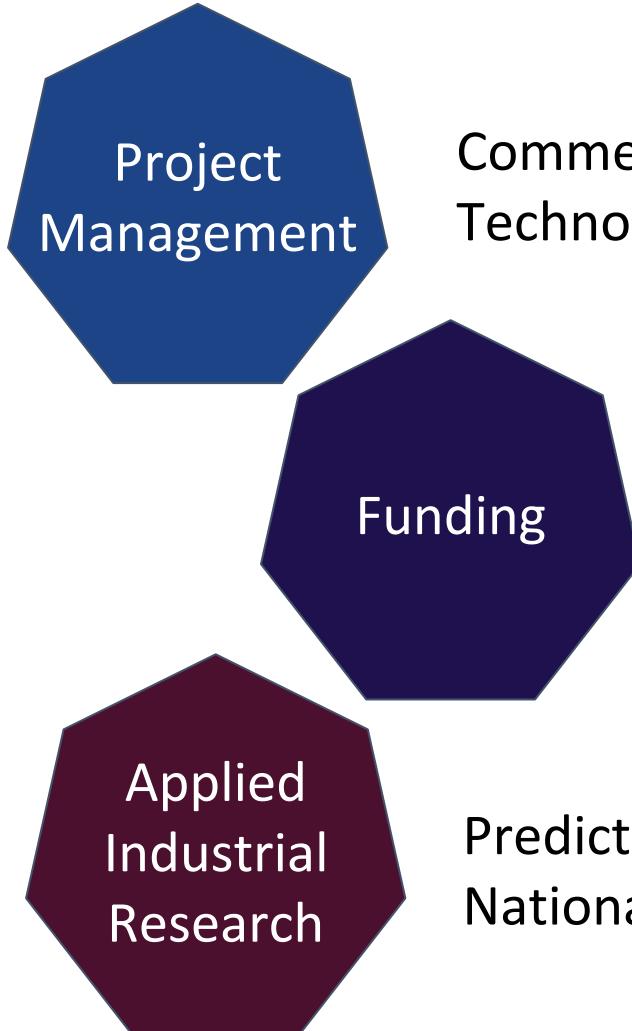
CUTRIC-CRITUC

www.cutric-crituc.org

Anaïssia FRANCA

Research Strategy Manager
May 21st 2019

Canadian Landscape – Battery Electric Bus Deployment by 2025 < 100


Percentage of
commuters who
used public
transit: **12.0%** in
Canada in 2011

Source:

1) Clean Energy Canada March 2019 (Report available : http://cleanenergycanada.org/wp-content/uploads/2019/03/Report_TER2019_Ebuses_20190329_v4_FINAL.pdf)

2) Statistics Canada July 2018 (Report available: https://www12.statcan.gc.ca/nhs-enm/2011/as-sa/99-012-x/99-012-x2011003_1-eng.cfm)

Areas of Activity

Commercialization Projects -
Technology Readiness Level (TRL) 7-9

Co-funding for projects in Ontario -
TRL 2-6

Predictive Feasibility Energy, Emissions, and Economic Modelling;
National and Global Industry Overviews; EVSE Siting

Pan-Canadian Electric Bus Demonstration & Integration Trial – Phase 1 (\$45M)

Standardization

Interoperability

OppCharge Protocol

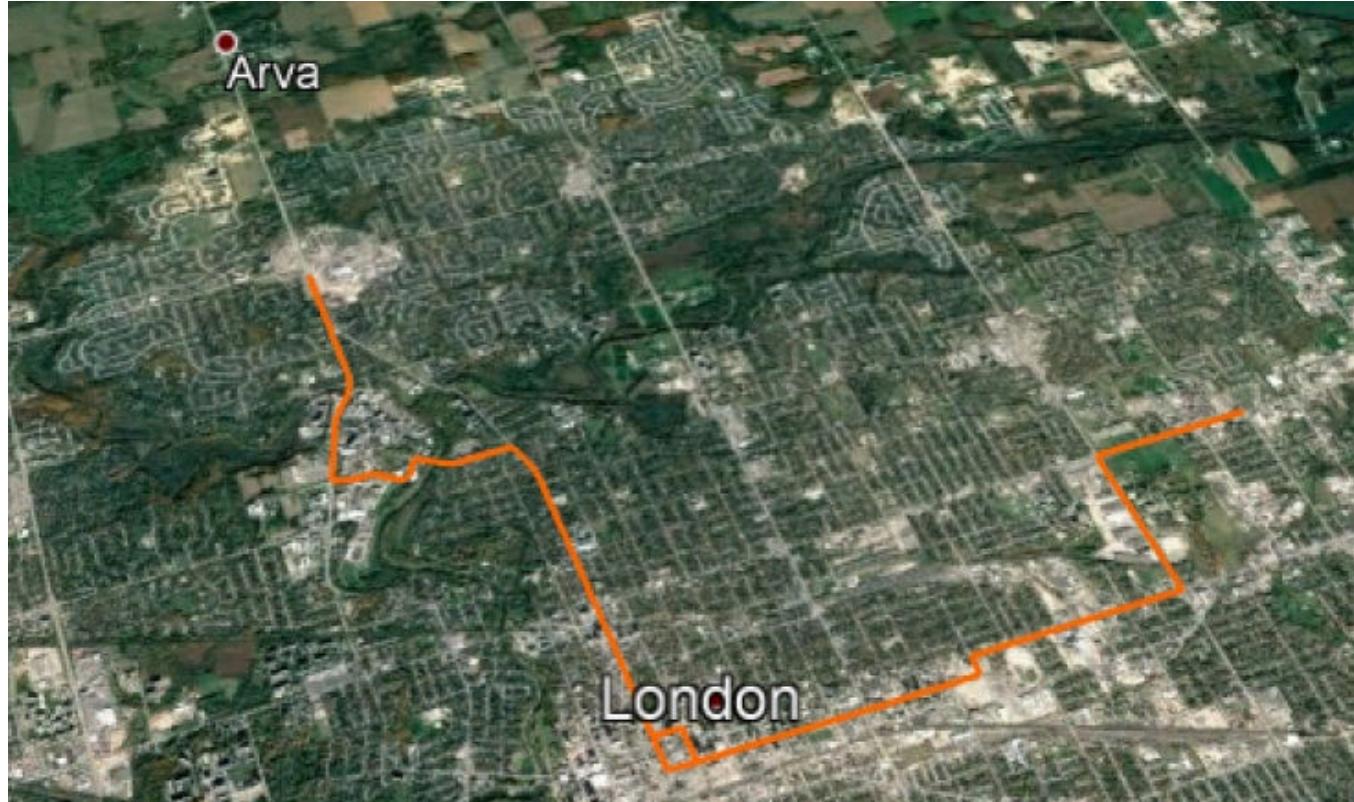
3 Transit: TransLink, Brampton, YRT

18 electric buses

7 overhead 450kW chargers

5 routes

Utility business innovation


Charger cybersecurity

OEM Partners: ABB, Siemens, New Flyer, Nova Bus

Utility partners: New Market Tay Power, BC Hydro

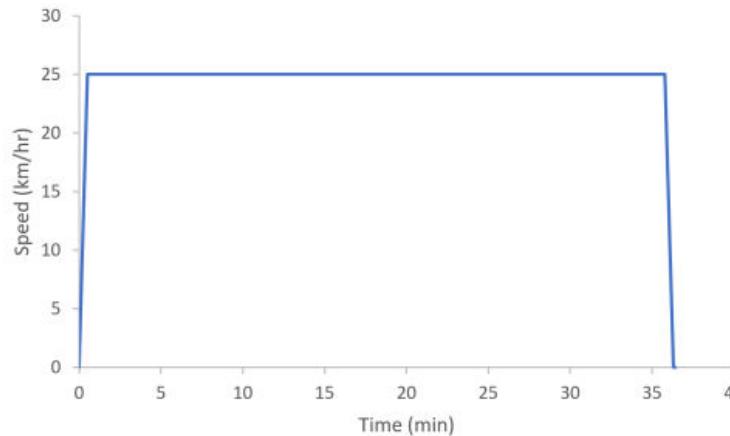
Feasibility on route “L” – London Transit (ON)

- High frequency / Rapid Transit (construction in 2025)
- 60 ft (articulated) deployed
- 29.2 km round trip
- 5 minutes of downtime scheduled at the terminal stations
- ~70 minutes round trip

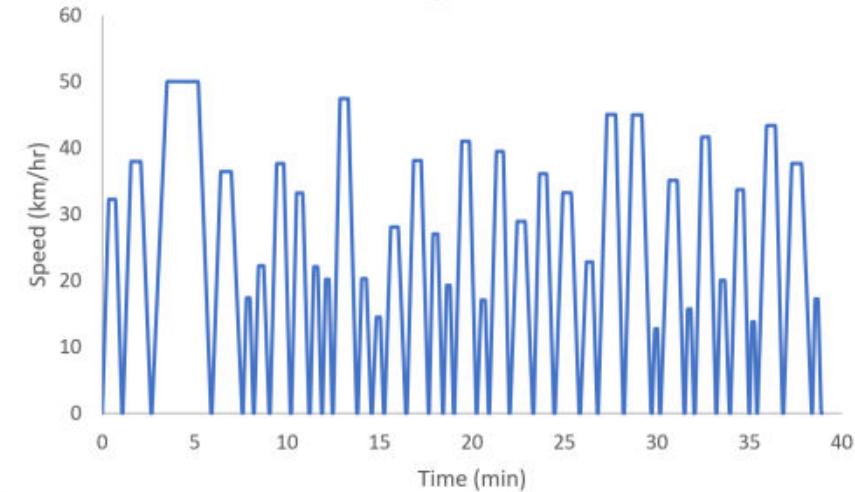
TRIPSIM © on route “L” – London Transit

1. Find the route topography
2. Use the route GTFS data to find information related to the schedule of the buses (including interlining), so called “block” modelling

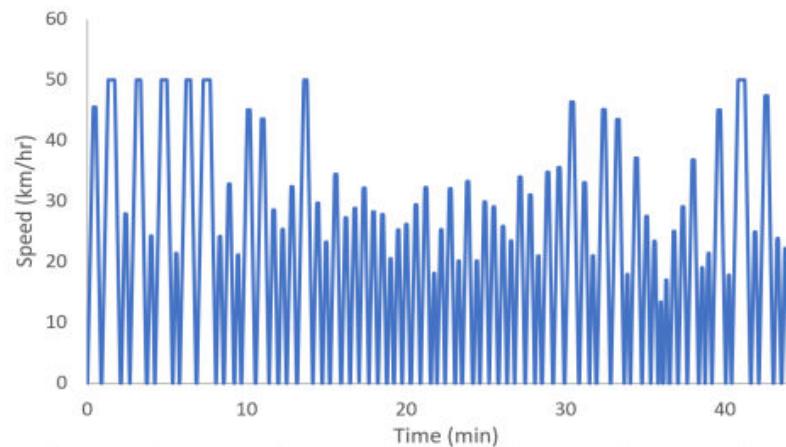
Total # round trips/day: Weekday: 216,
Saturday: 216, Sunday: 192


West to South			South to West		
Wonderland & Oxford (starts)	White Oaks (arrive)	STOP time (min)	White Oaks (starts)	Wonderland & Oxford (arrive)	STOP time (min)
6:00	6:35	5	6:00	6:35	5
6:05	6:40	5	6:05	6:40	5
6:10	6:45	5	6:10	6:45	5
6:40	---	5	6:40	7:15	5
6:45	7:15 7:20	5	6:45	7:20	5
6:50	7:25	5	6:50	7:25	5
....			...		

eBus B - 5min frequency ~~eBus A - 5 min frequency~~


TRIPSIM © on route “L” – London Transit

3. Get the traffic impedance information from the city
4. Model three duty cycles:


BASELINE SCENARIO

AVERAGE SCENARIO

WORST-CASE SCENARIO

TRiPSIM © Inputs

Operating conditions:

- Speed profile, second-by-second
- Topography (road grade), second-by-second
- Regenerative braking allowed
- Passenger load
- Auxiliary usage (including diesel heaters in winter)

Systems constraints (Provided by the utility and transit agencies):

- Schedule and distance to depot
- Local jurisdiction rates and emissions

Vehicle side (Provided by the OEMs):

- Powertrain characteristics (efficiencies of the motor, converters, transmission, maximum torque and RPM allowed...)
- Aerodynamic characteristics (drag coefficient, frontal area...)
- Physical characteristics (CW, battery capacity)

Charger side (Provided by the OEMs):

- Efficiencies of the charger and connection time
- Rated power

TRiPSIM © Inputs – OEM part of this study

New Flyer XE60 – 60 ft – 640 kWh (Depot charging capabilities – may have overhead fast charging capacities in the future)

Proterra – 60 ft – 660 kWh (overhead fast charging capability dominant, plugin in depot available)

TRIPSIM © Energy Consumption Results on Route “L” (29.2 km RT) – OEM X

	East to North direction				North to East direction			
			SOC at route end				SOC at route end	
	kWh per km	Total kWh used	Ideal	10% buffer	kWh per km	Total kWh used	Ideal	10 % buffer
Baseline	0.52	7.59	93.8%	88.8%	0.61	8.9	93.5%	88.5%
Average	1.73	25.19	90.9%	85.9%	1.78	26.04	90.7%	85.7%
Worst-case	3.35	48.91	87.0%	82.0%	3.47	50.61	86.7%	81.7%

TRIPSIM © Charging Time Results on Route “L” (29.2 km RT) – OEM X

With a 150 kW fast charger at the depot (including losses)

OEM X				
	Number of runs (roundtrips) without charging	Overnight/at-garage charging time (hours)	Energy from the grid (kWh)	Number of 60 ft required to electrify the route
Baseline	31	4.2	568.0	16
Average	10	4.2	569.2	22
Worst-case	5	4.1	552.9	42

Minimum required for the schedule, 1 to 1 diesel replacement

TRIPSIM © Charging Time Results on Route “L” (29.2 km RT) – OEM X

With a 600 kW fast charger at the terminal stations (including losses)

	East to North direction				North to East direction			
	Ideal charging 100 %		Typical efficiency		Ideal charging 100 %		Typical efficiency	
	Charging time (min)	Energy from the grid (kWh)	Charging time (min)	Energy from the grid (kWh)	Endpoint charging time (min)	Energy from the grid (kWh)	Charging time (min)	Energy from the grid (kWh)
Baseline	0.84	8.4	0.97	7.29	0.8	8.04	0.93	6.97
Average	2.53	25.31	2.93	21.96	2.55	25.49	2.95	22.12
Worst-case	4.72	47.21	5.46	40.96	4.62	46.22	5.35	40.1

TRIPSIM © Charging Time Results on Route “L” (29.2 km RT) – OEM X

With a 600 kW fast charger at the terminal stations (including losses)

	Number of 60 ft required to electrify the route
Baseline	OEM X 16
Average	16
Worst-case	27

Minimum required for the schedule, 1 to 1 diesel replacement

- Note, routes **will not operate continuously on a heavy duty cycle mode**
- Two chargers are required, one at each terminal
- Three buses charge in a 15min interval (used for demand charges calculations)
- There is a possibility to refine the model to include longer stops and charging at the Central Transit Hub if this is a preferred strategy

TRIPSIM © Charging Costs Results on on Route “L” (29.2 km RT) – OEM X – Full Fleet

2,268,069.12km per year on this route

	Baseline	Average	Worst-case	
Yearly MWh estimated	1,065	2,656	4,507	(1) Electricity costs assuming London Hydro's electricity rates large general service customers
Electricity cost (CAD \$)	\$124,558	\$310,679	\$527,054	(2) Two chargers are required to fully electrify the route
Regulatory cost (CAD \$)	\$11,613	\$28,959	\$49,124	(3) Demand charges are almost maximized
Delivery cost (CAD \$)	\$15,882	\$32,310	\$51,252	(4) Carbon tax: \$50/Tonnes CO2e
Total charging cost for a year (CAD \$)	\$152,053	\$371,947	\$627,430	(5) Diesel at \$0.9116/L based on London Transit's average fuel price over the last 10 years
Diesel cost for a year (CAD \$)	\$459,686	\$773,446	\$1,199,593	
Benefits (CAD \$)	\$307,633	\$401,499	\$572,163	
Benefits with Carbon price (CAD \$)	\$311,302	\$409,574	\$585,539	

TRIPSIM © Emissions Reduction Results on Route 100 (30 km RT) – OEM X – Full Fleet

	Baseline	Average	Worst-case
Yearly electricity estimated (MWh)	1,065	2,656	4,507
Yearly diesel use (L)	504,262	848,448	1,315,920
CO2e from electricity (Tonne) (1)	47	117	198
CO2e from diesel (Tonne) (2)	1,326	2,231	3,461
Yearly CO2e reduction (Tonne)	1,279	2,115	3,263
Yearly CO2e reduction (%)	94%	94%	94%

(1) ON's electricity grid emission factor is 0.044 Tonne CO2e/MWh (2015)

(2) Mobile emissions factor for mobile fuel combustion of diesel in heavy-duty vehicles is 2.63 kg CO2e/L

BC Ministry of Environment
“2016/17 B.C. Best practices
Methodology for quantifying
greenhouse gas emissions”
Victoria, May 2016

Conclusion

For every Ebus project:

- Perform a feasibility analysis (preferably route based and capturing climatic variations)
- Ensure your system is standardized – such as J3105
- Different technologies may work best for your system i.e Fast Charging, Slow Charging, Hydrogen, With or Without Energy Storage
- We still welcome new champions to join our Pan Canadian Ebus Phase II project

Next steps for us:

- Validate our tool with ViriCity loggers
- Create a robust modelling tool integrating energy storage to calculate the benefits it can generate

Contact Information

Modelling and Applied Research

Anaissia Franca

Anaissia.franca@cutric-crituc.org

Pan-Canadian Electric Bus Demonstration & Integration Trial

Dr. Abhishek Raj

abhishek.raj@cutric-crituc.org