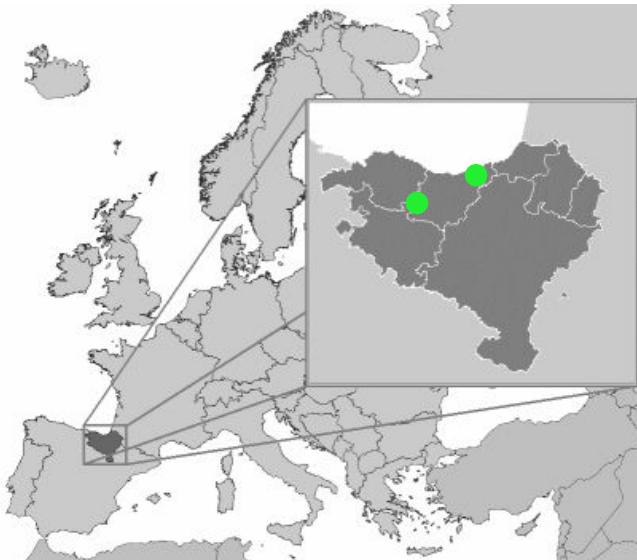


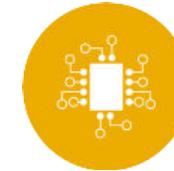
INTERNATIONAL
ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

Self-adaptive ageing model for Li-ion batteries using Machine Learning methods


ikerlan

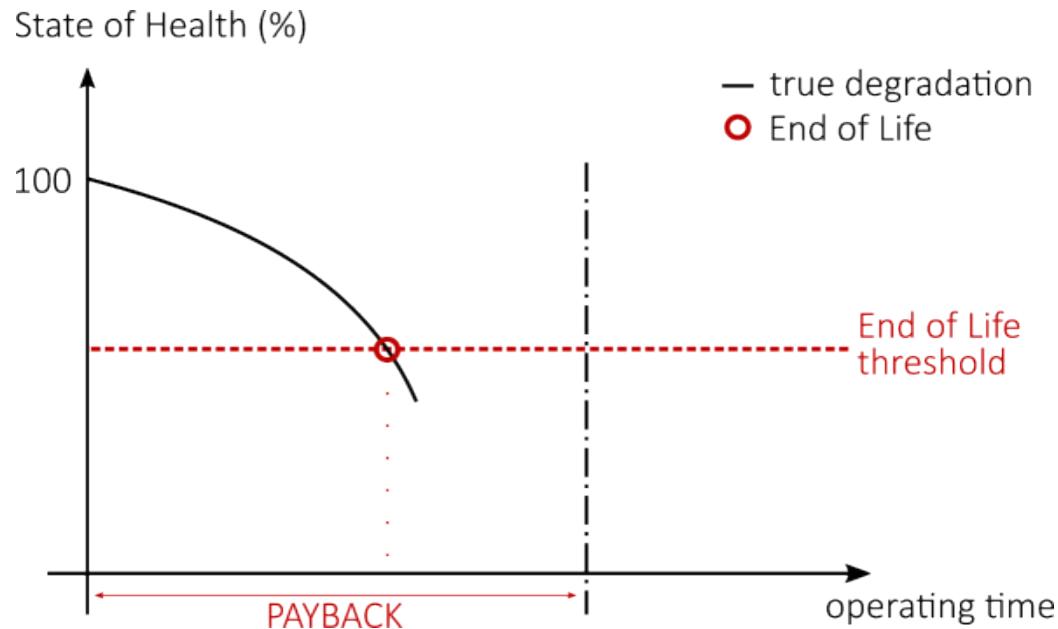

Martin Lucu Oyhagaray
20/05/2019

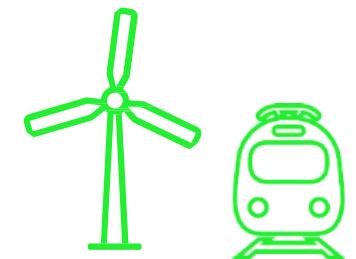
- • Ikerlan Technology Research Centre
- • Context
- • Gaussian Process models
- • Modelling Li-ion battery ageing
- • Conclusions & current works


WHERE
TECHNOLOGY
IS AN ATTITUDE

“3 RESEARCH FOCUSES ALIGNED WITH OUR
3 AREAS OF EXPERTISE”

ENERGY
AND POWER
ELECTRONICS

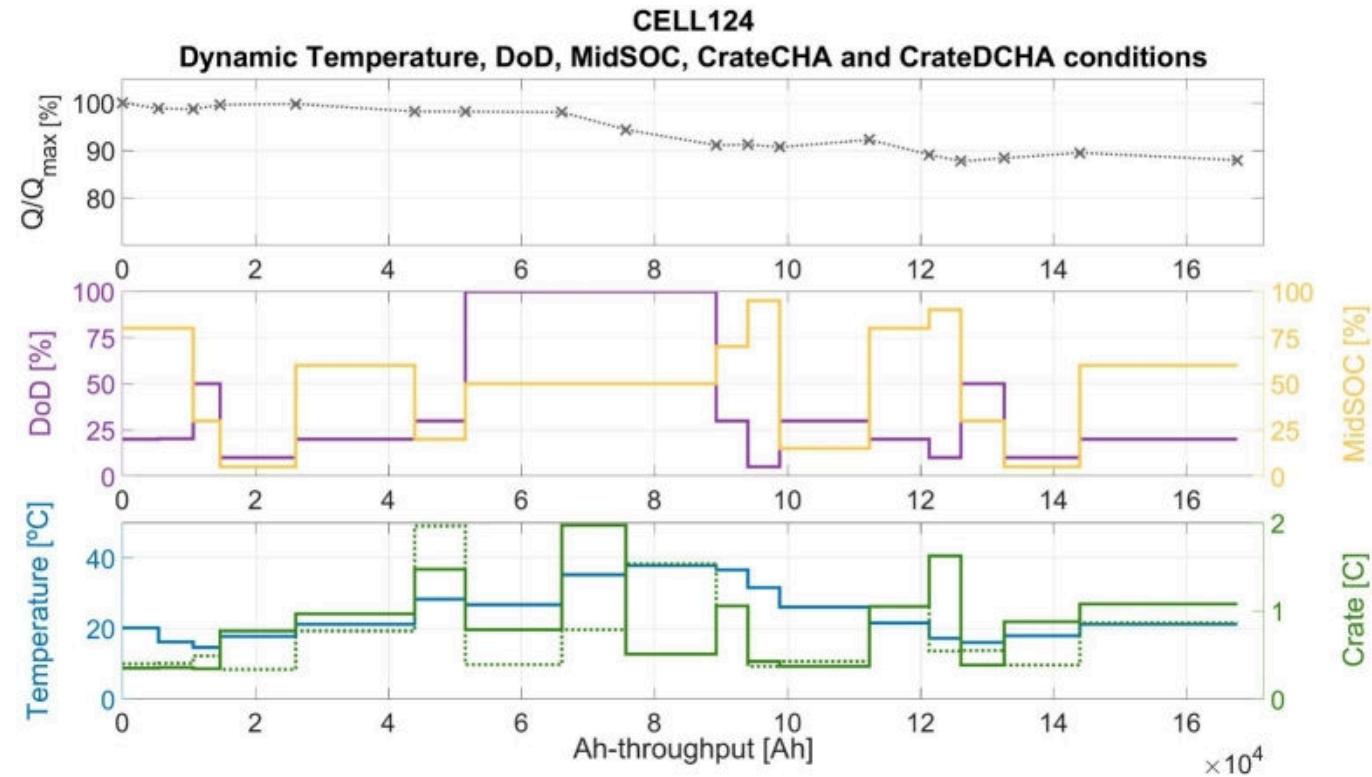

ELECTRONICS,
INFORMATION, AND
COMMUNICATION
TECHNOLOGIES


ADVANCED
MANUFACTURING

TEAM OF
360
PEOPLE

Lithium-ion batteries suffer **capacity loss** and **resistance increase**, due to different **ageing mechanisms**

Ageing rate depends on the operating conditions



- Temperature
- Depth of Discharge (DOD)
- Middle State of Charge (MidSOC)
- C-rate
 - in charge
 - in discharge

Common research field

Models able to perform accurate ageing predictions at **dynamic operating conditions**

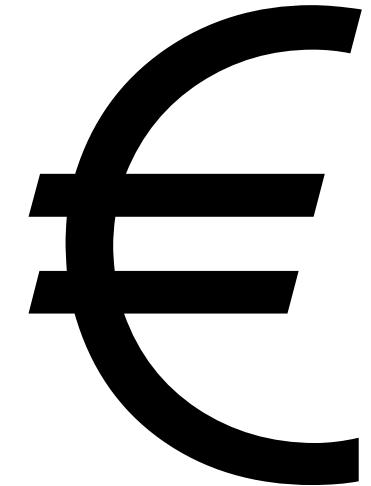
- Improve system sizing
- Energy management strategies

- 122 cells aged at **static cycle ageing** conditions

DOD		100%	80%	65%	50%			35%	20%				10%			
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Crate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
35°C	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
	2C - 2C		X													
45°C	C/3 - 1C	X	X	X		X		X			X					

- 122 cells aged at **static cycle ageing** conditions
- 30 cells aged at **static calendar ageing** conditions
- 6 cells aged at **dynamic calendar / cycle** ageing conditions
- 8 cells aged with **realistic driving profiles**
- **166 In total**

To develop a (semi-) empirical ageing model, covering a broad window of the operating conditions...


- 122 cells aged at **static cycle ageing** conditions
- 30 cells aged at **static calendar ageing** conditions
- 6 cells aged at **dynamic calendar / cycle** ageing conditions
- 8 cells aged with **realistic driving profiles**
- **166 In total**

To develop a (semi-) empirical ageing model, covering a broad window of the operating conditions...

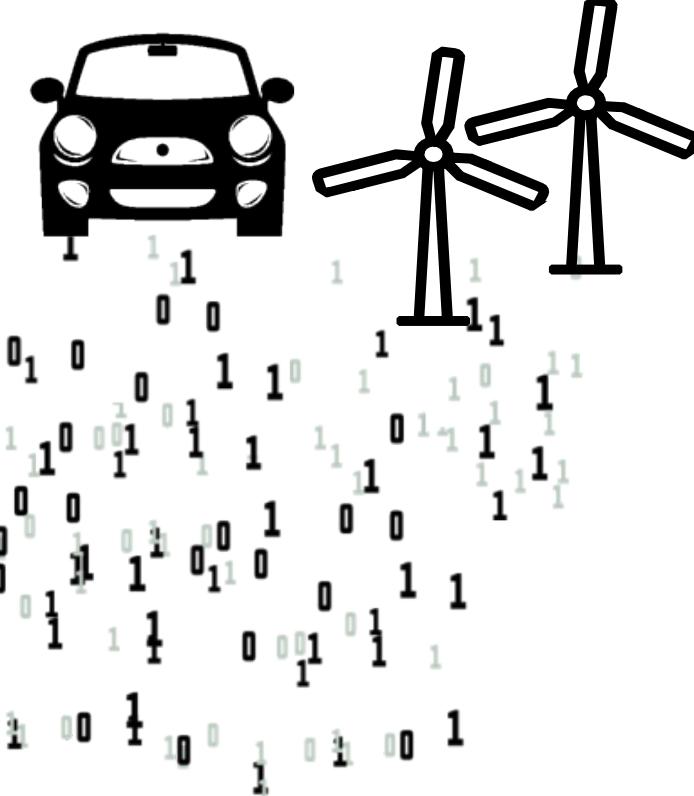
... for $N_4M_4C_2$ / graphite cells

166 ageing tests!

- Testing equipment cost
- Scientists' time is expensive

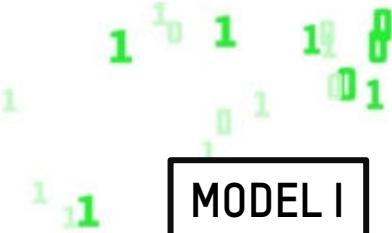
Need to imagine
models requiring
less laboratory data...

$$\begin{matrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{matrix}$$



Need to imagine
models requiring
less laboratory data...

1 1 1 1 1 1 1 1


Digitalisation of industry

Forthcoming availability of
huge amount of real-world
battery operation data

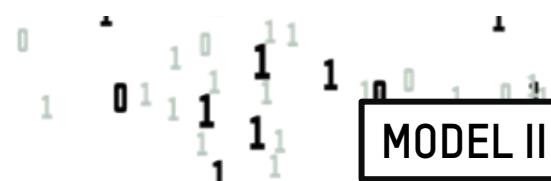
Need to imagine
models requiring
less laboratory data...

- Generic model
- Relatively broad operating window
- Sufficient accuracy to help in **system sizing**

Digitalisation of industry

Forthcoming availability of
huge amount of real-world
battery operation data

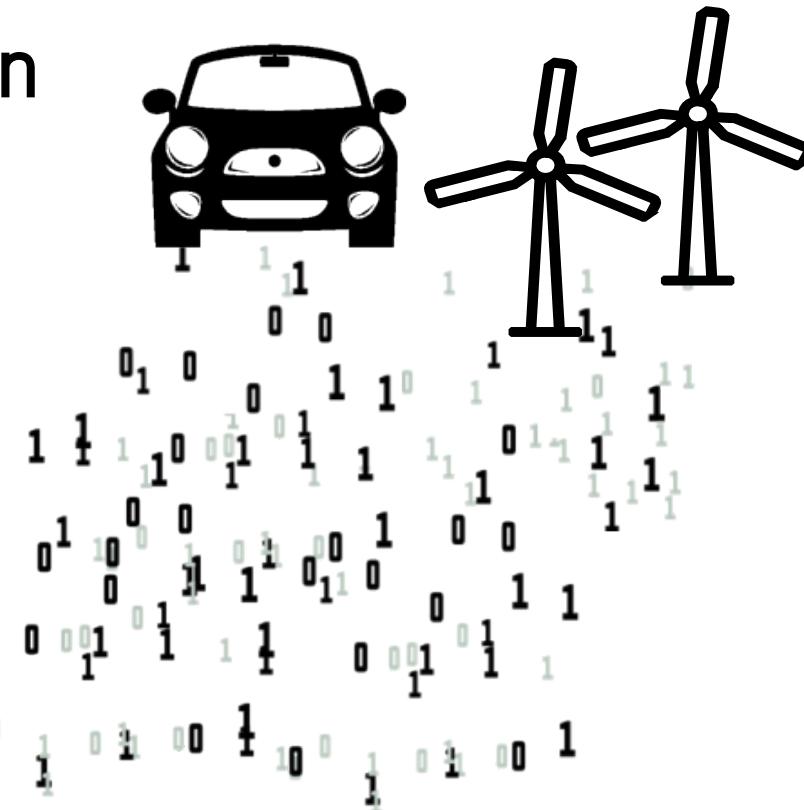
Need to imagine
models requiring
less laboratory data...


MODEL I

MODEL I

- **Generic model**
- **Relatively broad** operating window
- Sufficient accuracy to help in **system sizing**

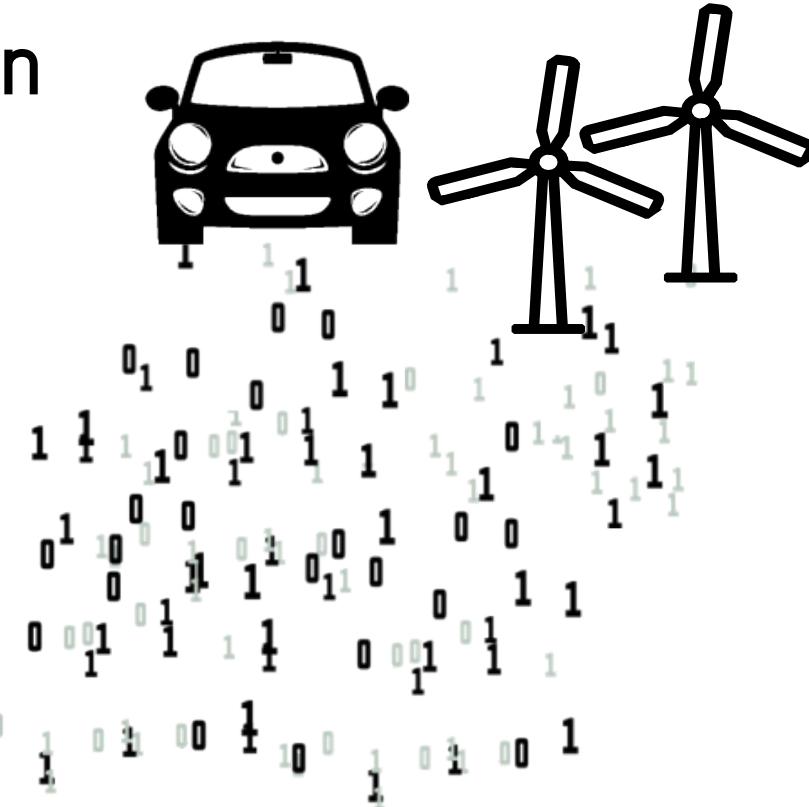
Digitalisation of industry


Forthcoming availability of
huge amount of real-world
battery operation data

MODEL

- Higher level of **specialisation**
- **Increasingly broader** operating window
- Improved accuracy

- **Predictive maintenance**
- Adaptive **energy management strategies**, etc.




Need to imagine
models requiring
less laboratory data...

Digitalisation of industry

Forthcoming availability of
huge amount of real-world
battery operation data

Contents lists available at [ScienceDirect](#)

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Review article

A critical review on self-adaptive Li-ion battery ageing models

M. Lucu^{a,b,*}, E. Martínez-Laserna^a, I. Gandiaga^a, H. Camblong^{b,c}

^a IK4-Ikerlan Technology Research Centre, Energy Storage and Management Area. Pº J.M. Arizmendiarrieta, 2. 20500 Arrasate-Mondragón, Spain

^b University of the Basque Country (UPV/EHU), Department of Systems Engineering & Control. Europa Plaza, 1. 20018 Donostia-San Sebastian, Spain

^c ESTIA Research, Ecole Supérieur des Technologies Industrielles Avancées (ESTIA), Technopole Izarbel, 64210 Bidart, France

HIGHLIGHTS

- Self-adaptive Li-ion battery ageing models are reviewed, discussed and classified.
- Specific criteria are defined for accuracy and computational cost assessment.
- Most suitable self-adaptive models for battery ageing prediction are identified.
- Recommendations for self-adaptive ageing models development are provided.

ARTICLE INFO

Keywords:
Lithium-ion battery
Lifetime prognosis
State of health
Remaining useful life
Adaptive models
Battery management system

ABSTRACT

The prediction accuracy of Lithium-ion (Li-ion) battery ageing models based on laboratory data is uncertain in the context of online prediction. This is due to the difficulty to reproduce realistic operating profiles in laboratory. The development of self-adaptive ageing models, which are updated using the ageing data obtained in operation, allows enhancing the online prediction accuracy and reducing the required characterisation period in laboratory. At the same time, it offers the possibility to maximise systems' profitability, providing useful information to update the energy management strategy and for predictive maintenance purposes.

The present study aims at reviewing, classifying and comparing the different self-adaptive Li-ion battery ageing models proposed in the literature. Firstly, the different characteristics influencing the ability of a model to update itself are identified, and a classification is proposed for self-adaptive Li-ion battery ageing modelling methods. Secondly, specific criteria are defined to assess and compare the accuracy and computational cost of the different models, enabling a selection of the most suitable ones. Finally, relevant conclusions are drawn considering the key features required to achieve effective ageing predictions, and concise recommendations are suggested for future self-adaptive Li-ion battery ageing model development.

- Gaussian Process framework

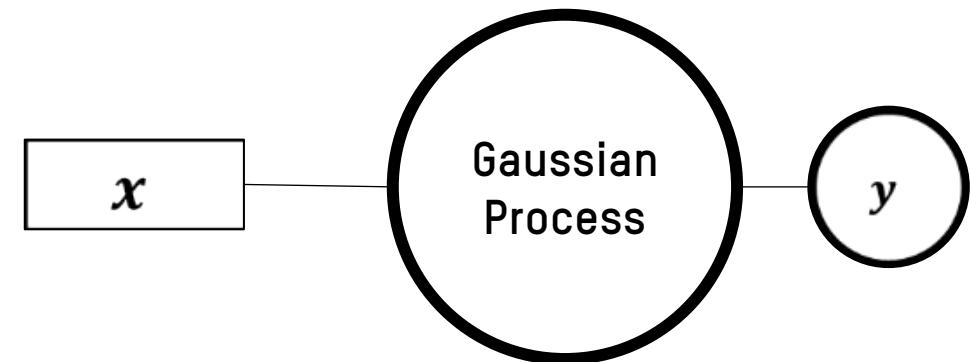
Gaussian Process models

- **Probabilistic:** able to express uncertainty
- **Nonparametric:** high flexibility

Gaussian Process models

- **Probabilistic:** able to express uncertainty
- **Nonparametric:** high flexibility

GOVERNING EQUATIONS


$$f_* | X, \mathbf{y}, X_* \sim N(\bar{f}_*, \text{cov}(f_*))$$

- Mean prediction $\bar{f}(\mathbf{x}_*) = \sum_{i=1}^n \alpha_i \cdot \kappa(\mathbf{x}_i, \mathbf{x}_*)$
$$\boldsymbol{\alpha} = (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \cdot \mathbf{y}$$
- Confidence boundaries

$$\text{cov}(f_*) = \mathbf{K}(X_*, X_*) - \mathbf{K}(X_*, X) [\mathbf{K}(X, X) + \sigma_n^2 \mathbf{I}]^{-1} \mathbf{K}(X, X_*)$$

MODELS'
INPUTS

PREDICTIONS

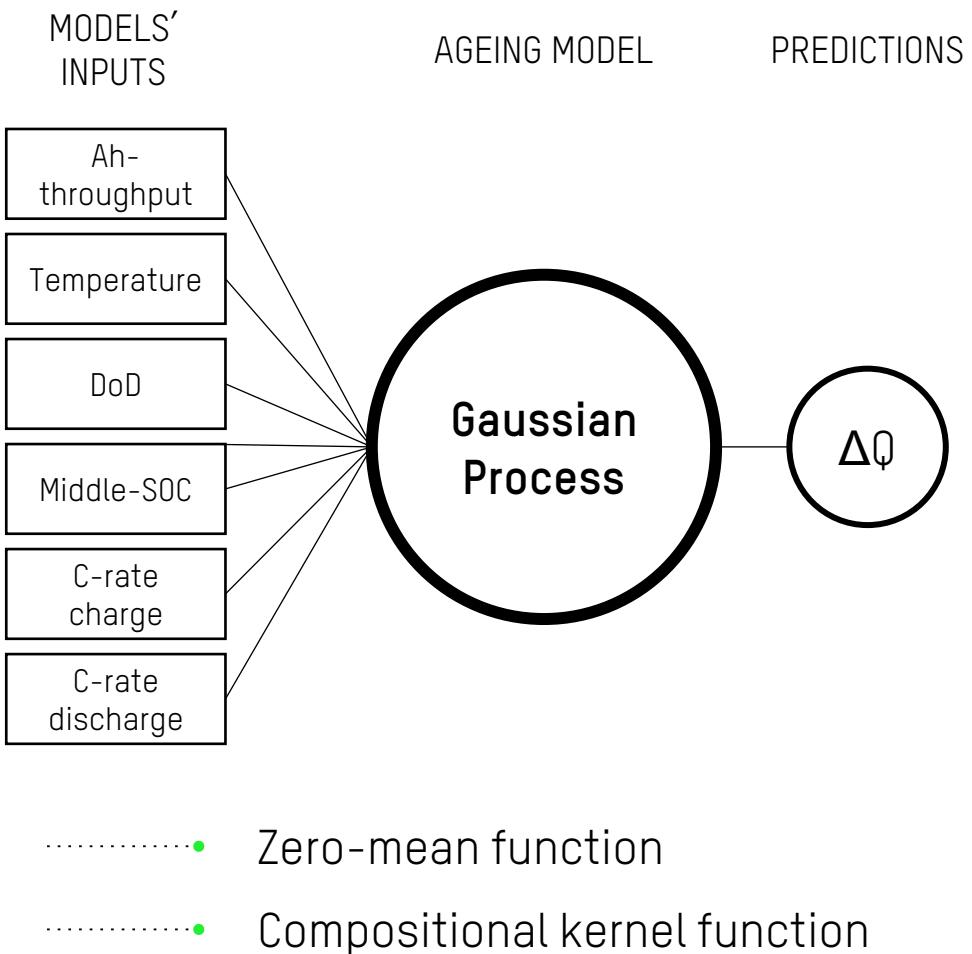
Composed of:

- Mean function
- Kernel function

Modelling Li-ion battery ageing

- Inputs and outputs

- **Probabilistic:** able to express uncertainty
- **Nonparametric:** high flexibility


GOVERNING EQUATIONS

$$f_* | X, \mathbf{y}, X_* \sim N(\bar{f}_*, \text{cov}(f_*))$$

- Mean prediction $\bar{f}(\mathbf{x}_*) = \sum_{i=1}^n \alpha_i \cdot \kappa(\mathbf{x}_i, \mathbf{x}_*)$
$$\boldsymbol{\alpha} = (K + \sigma_n^2 I)^{-1} \cdot \mathbf{y}$$

- Confidence boundaries

$$\text{cov}(f_*) = K(X_*, X_*) - K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1} K(X, X_*)$$

GOAL 1

-• Quantify the minimum number of required training data
-• **Learning from static** ageing conditions

GOAL 2

-• **Validation at dynamic** ageing conditions
-• **Learning from dynamic** ageing conditions

GOAL 1

-• Quantify the minimum number of required training data
-• **Learning from static** ageing conditions

GOAL 2

-• Validation at dynamic ageing conditions
-• Learning from dynamic ageing conditions

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

Cycle ageing matrix

Training data / Total data [%]	TRAINING CASE
8%	CASE 1
10%	CASE 2
15%	CASE 3
21%	CASE 4
37%	CASE 5
60%	CASE 6
64%	CASE 7
71%	CASE 8
74%	CASE 9
78%	CASE 10
80%	CASE 11
81%	CASE 12
92%	CASE 13
94%	CASE 14
98%	CASE 15
100%	CASE 16

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
35°C	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
	2C - 2C		X													
45°C	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		

TRAINING CASE 1

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X		X						
	1C-1C		X													
35°C	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
	2C - 2C		X													
45°C	C/3 - 1C	X	X	X		X		X		X		X				

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2

TRAINING CASE 2

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X		X						
	1C-1C		X													
35°C	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
	2C - 2C		X													
45°C	C/3 - 1C	X	X	X		X		X		X		X				

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 3

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3			X												
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
35°C	2C - 1C		X													
	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					
45°C	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 4

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X				X		X		X				
	1C-1C		X													
	C/3 - C/3			X												
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
35°C	2C - 1C		X													
	2C - 2C		X													
	C/3 - 1C	X	X	X				X		X		X				
45°C	C/3 - 1C	X	X	X				X		X		X				

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 5

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3			X												
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
35°C	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					
45°C	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 6

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
35°C	2C - 1C		X													
	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X		X			
45°C	C/3 - 1C	X	X	X		X		X			X		X			

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 7

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
35°C	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					
45°C	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 8

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
	80%	71%	CASE 8
Middle-SOC			

DOD		100%	80%	65%	50%		35%	20%		10%						
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 9

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
	80%	71%	CASE 8
Middle-SOC	20%	74%	CASE 9

DOD		100%	80%	65%	50%		35%	20%			10%						
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%	
Temp.	Rate																
25°C	C/3 - 1C	X	X	X		X		X			X						
	1C-1C		X														
	C/3 - C/3		X														
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X														
	C/2 - 1C		X														
	1C - 1C		X														
	2C - 1C		X														
	2C - 2C		X														
	C/3 - 1C	X	X	X		X		X			X						

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 10

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
	80%	71%	CASE 8
Middle-SOC	20%	74%	CASE 9
	65%	78%	CASE 10

DOD		100%	80%	65%	50%		35%	20%		10%						
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
35°C	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					
45°C	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 11

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
	80%	71%	CASE 8
Middle-SOC	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11

DOD		100%	80%	65%	50%		35%	20%		10%						
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C		X													
	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 12

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
35°C	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
	2C - 1C			X												
	2C - 2C			X												
45°C	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 13

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12
	1C	92%	CASE 13

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
35°C	2C - 1C		X													
	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					
45°C																

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 14

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12
	1C	92%	CASE 13
	0.5C	94%	CASE 14

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
35°C	2C - 1C		X													
	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					
45°C	C/3 - 1C	X	X	X		X		X			X					

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 15

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12
	1C	92%	CASE 13
	0.5C	94%	CASE 14
Discharging C-rate	2C	98%	CASE 15

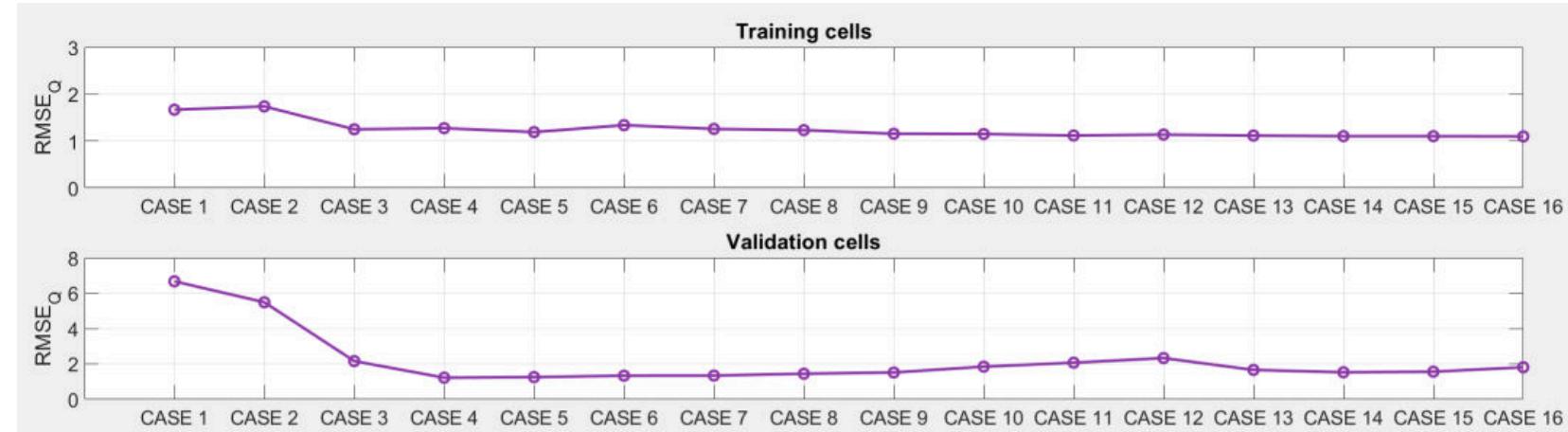
DOD		100%	80%	65%	50%		35%	20%			10%						
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%	
Temp.	Rate																
25°C	C/3 - 1C	X	X	X		X		X			X						
	1C-1C		X														
	C/3 - C/3		X														
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	C/3 - 2C		X														
	C/2 - 1C		X														
	1C - 1C		X														
35°C	2C - 1C		X														
	2C - 2C		X														
	C/3 - 1C	X	X	X		X		X			X						
45°C																	

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

TRAINING CASE 16

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12
	1C	92%	CASE 13
	0.5C	94%	CASE 14
Discharging C-rate	2C	98%	CASE 15
	0.3C	100%	CASE 16

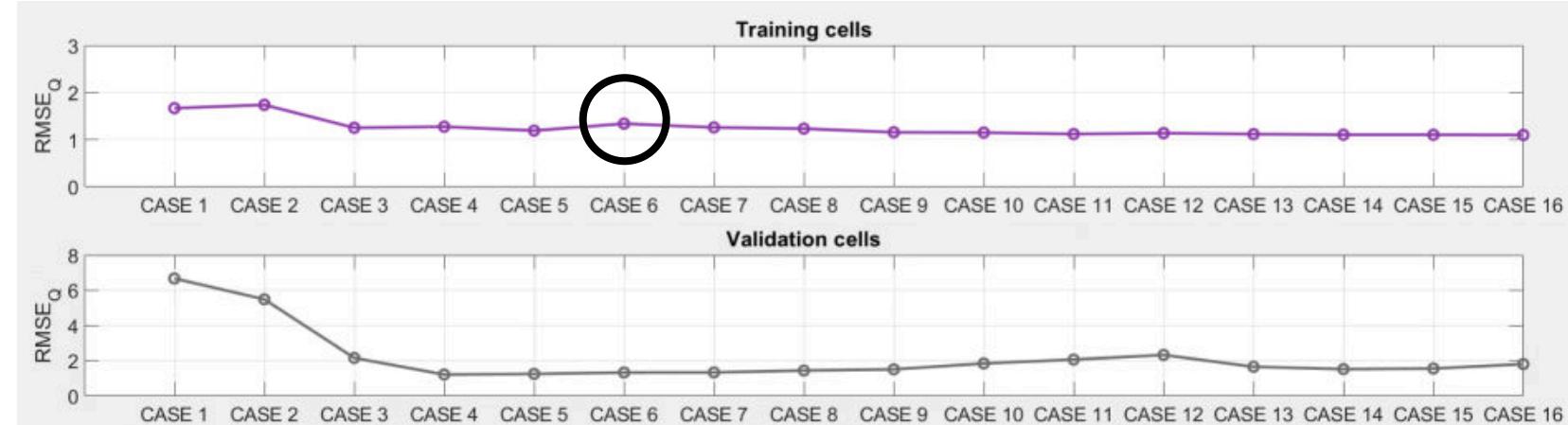

DOD		100%	80%	65%	50%		35%	20%			10%					
Mid.SOC		50%	50%	50%	65%	50%	35%	50%	80%	65%	50%	35%	20%	80%	65%	20%
Temp.	Rate															
25°C	C/3 - 1C	X	X	X		X		X			X					
	1C-1C		X													
	C/3 - C/3		X													
	C/3 - 1C	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	C/3 - 2C		X													
	C/2 - 1C		X													
	1C - 1C		X													
35°C	2C - 1C		X													
	2C - 2C		X													
	C/3 - 1C	X	X	X		X		X			X					
45°C																

Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12
	1C	92%	CASE 13
	0.5C	94%	CASE 14
Discharging C-rate	2C	98%	CASE 15
	0.3C	100%	CASE 16

Mean of the prediction errors

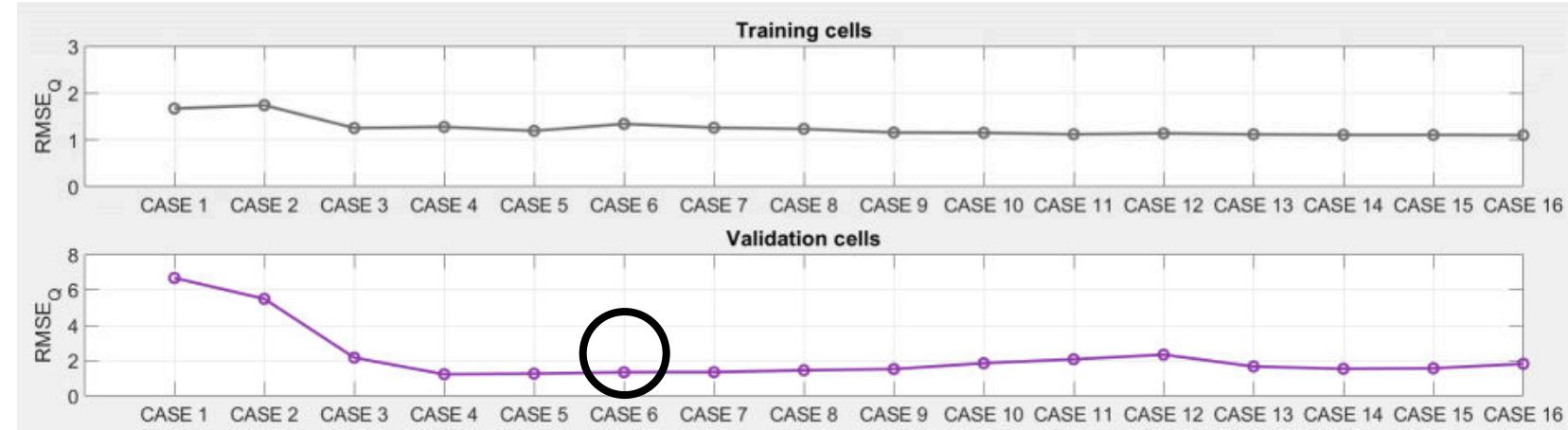


Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12
	1C	92%	CASE 13
	0.5C	94%	CASE 14
Discharging C-rate	2C	98%	CASE 15
	0.3C	100%	CASE 16

Mean of the prediction errors

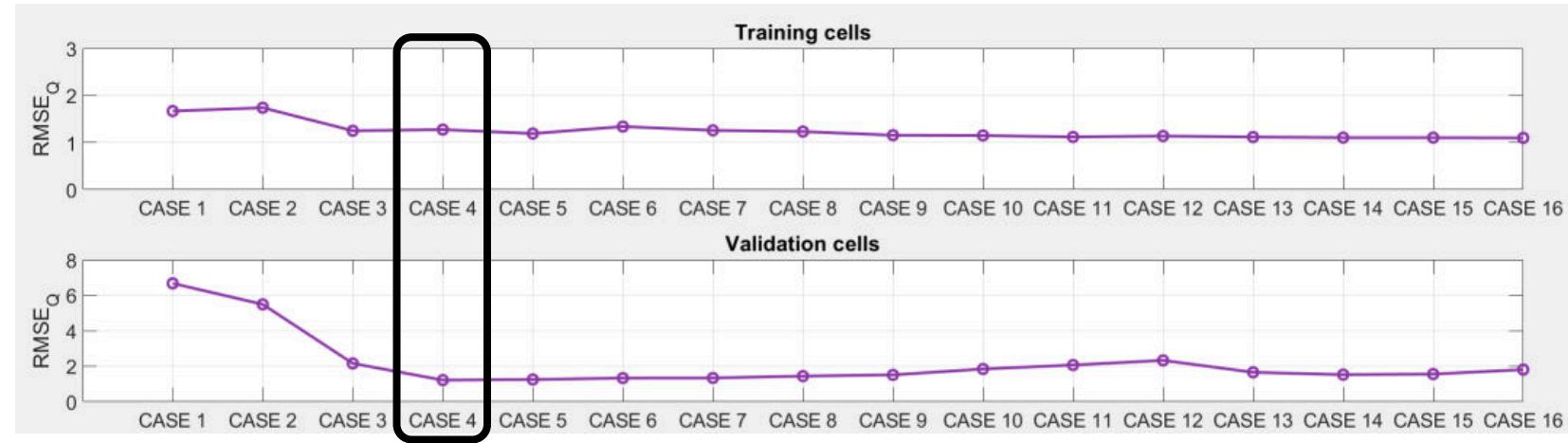


Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12
	1C	92%	CASE 13
	0.5C	94%	CASE 14
Discharging C-rate	2C	98%	CASE 15
	0.3C	100%	CASE 16

Mean of the prediction errors



Modelling Li-ion battery ageing

- GOAL 1: Quantifying required training data

Since TRAINING CASE 4,
not any significant improvement

Mean of the prediction errors

Training data

- • **21%** of the total data for training
- • 3 temperatures: 25°C, 35°C, 45°C
- • 3 DoD levels: 100%, 65%, 20%

Accuracy

- • **1.2% RMSE** in training
- • **1.21% RMSE** in validation

GOAL 1

-• Quantify the minimum number of required training data
-• **Learning from static** ageing conditions

GOAL 2

-• Validation at dynamic ageing conditions
-• Learning from dynamic ageing conditions

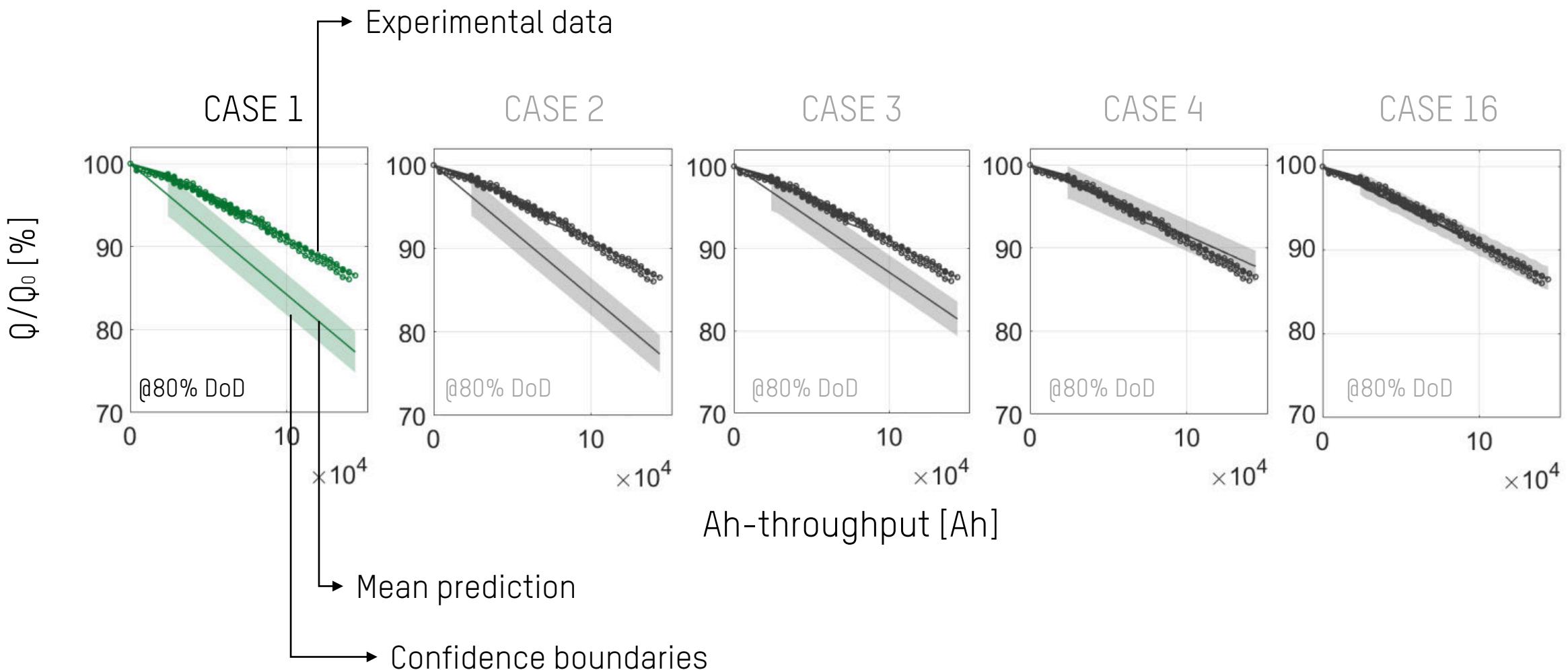
Modelling Li-ion battery ageing

- GOAL 1: Validation and learning from static conditions

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE
Temperature	25°C	8%	CASE 1
	45°C		
	35°C	10%	CASE 2
DoD	20%	15%	CASE 3
	65%	21%	CASE 4
	50%	37%	CASE 5
	80%	60%	CASE 6
	35%	64%	CASE 7
Middle-SOC	80%	71%	CASE 8
	20%	74%	CASE 9
	65%	78%	CASE 10
	35%	80%	CASE 11
Charging C-rate	2C	81%	CASE 12
	1C	92%	CASE 13
	0.5C	94%	CASE 14
Discharging C-rate	2C	98%	CASE 15
	0.3C	100%	CASE 16

Plotting prediction
at **80% DoD**

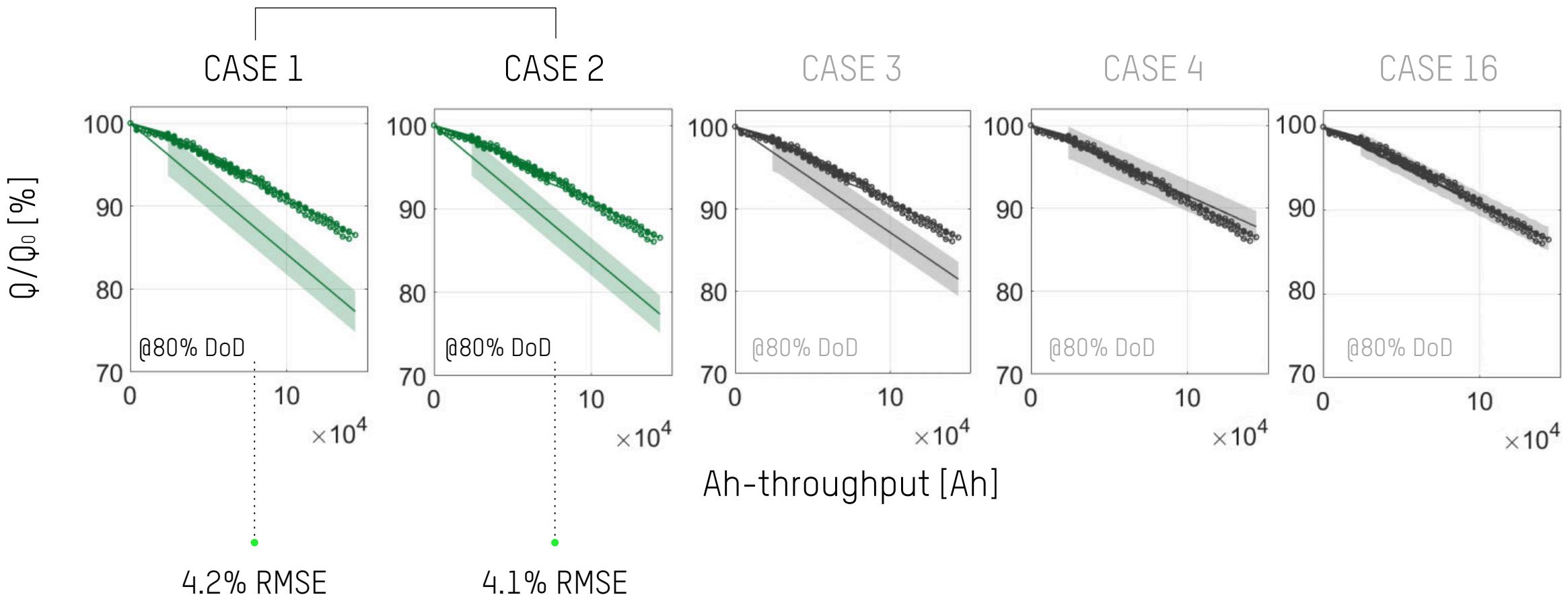
Modelling Li-ion battery ageing


- GOAL 1: Validation and learning from static conditions

Learning stress-factor	New training condition	Training data / Total data [%]	TRAINING CASE	
Temperature	25°C	8%	CASE 1	MODEL 1
	45°C			
	35°C	10%	CASE 2	MODEL 2
DoD	20%	15%	CASE 3	MODEL 3
	65%	21%	CASE 4	MODEL 4
	50%	37%	CASE 5	
	80%	60%	CASE 6	
	35%	64%	CASE 7	
	80%	71%	CASE 8	
Middle-SOC	20%	74%	CASE 9	
	65%	78%	CASE 10	
	35%	80%	CASE 11	
	2C	81%	CASE 12	
Charging C-rate	1C	92%	CASE 13	
	0.5C	94%	CASE 14	
	2C	98%	CASE 15	
Discharging C-rate	0.3C	100%	CASE 16	MODEL 16

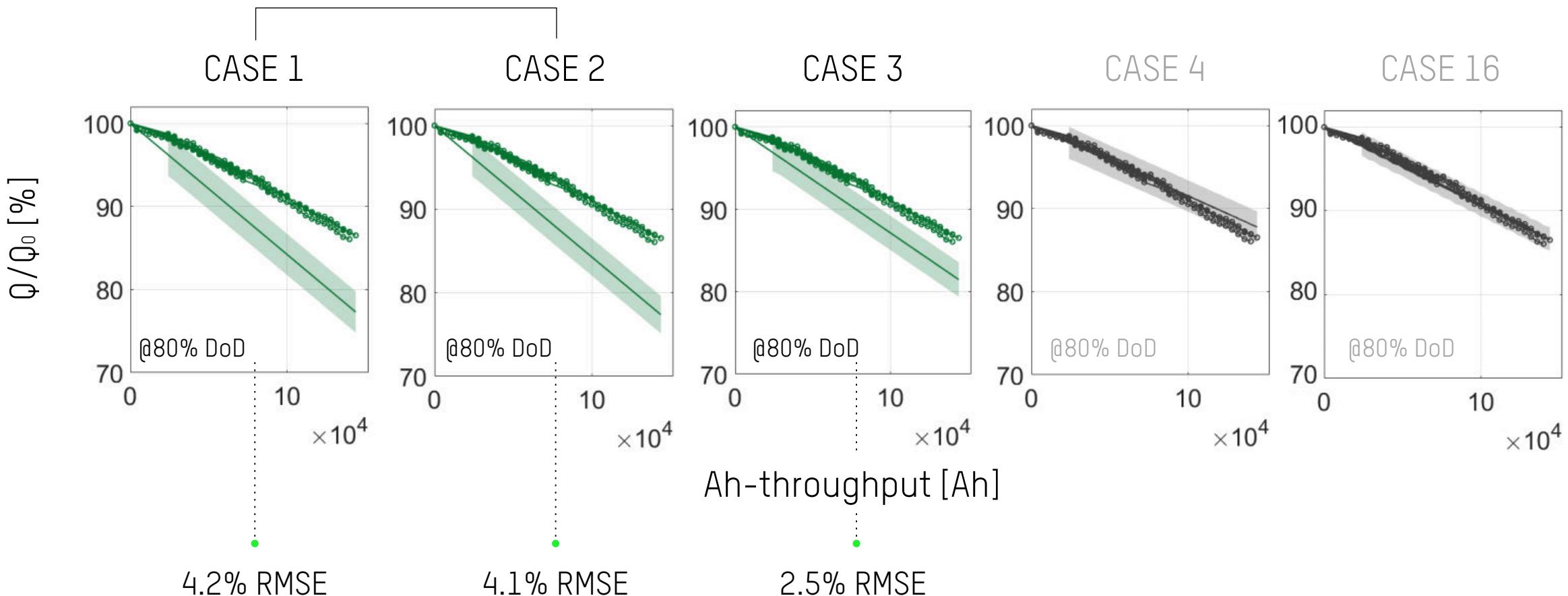
Plotting prediction
at **80% DoD**

Modelling Li-ion battery ageing


- GOAL 1: Validation and learning from static conditions

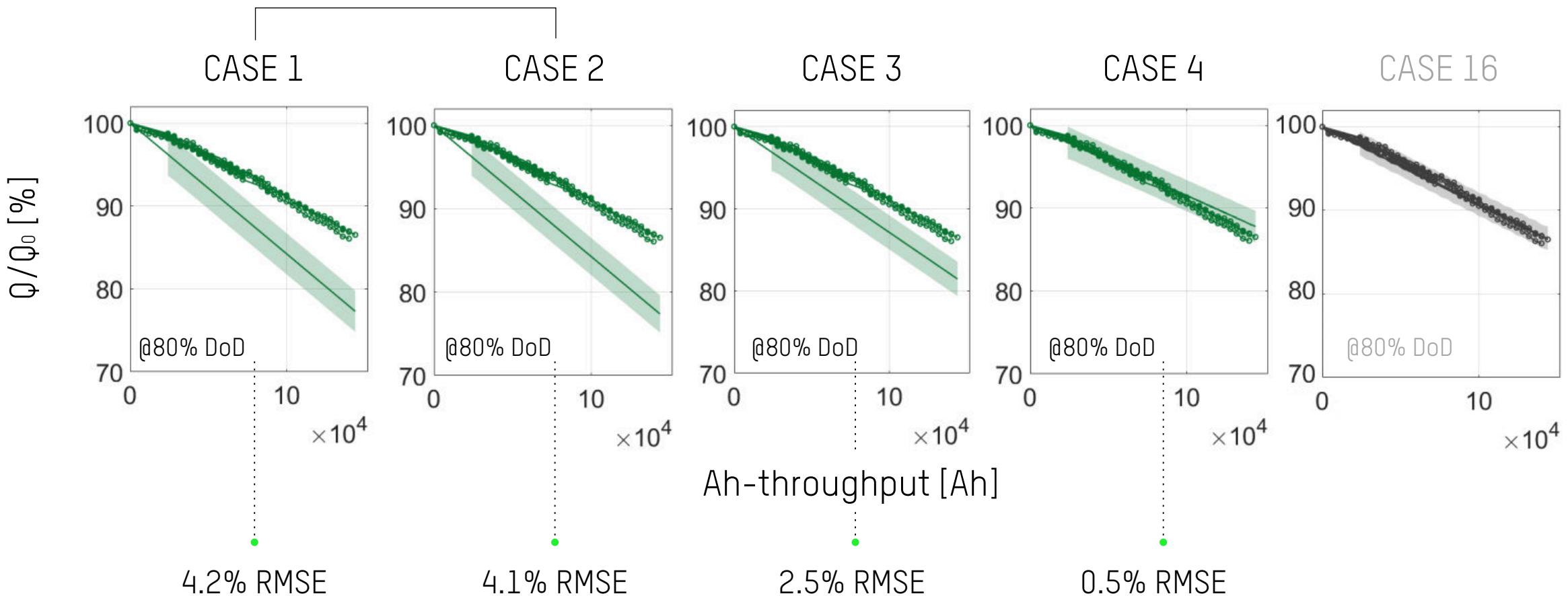
Modelling Li-ion battery ageing

- GOAL 1: Validation and learning from static conditions


Trained at: → 100% DoD

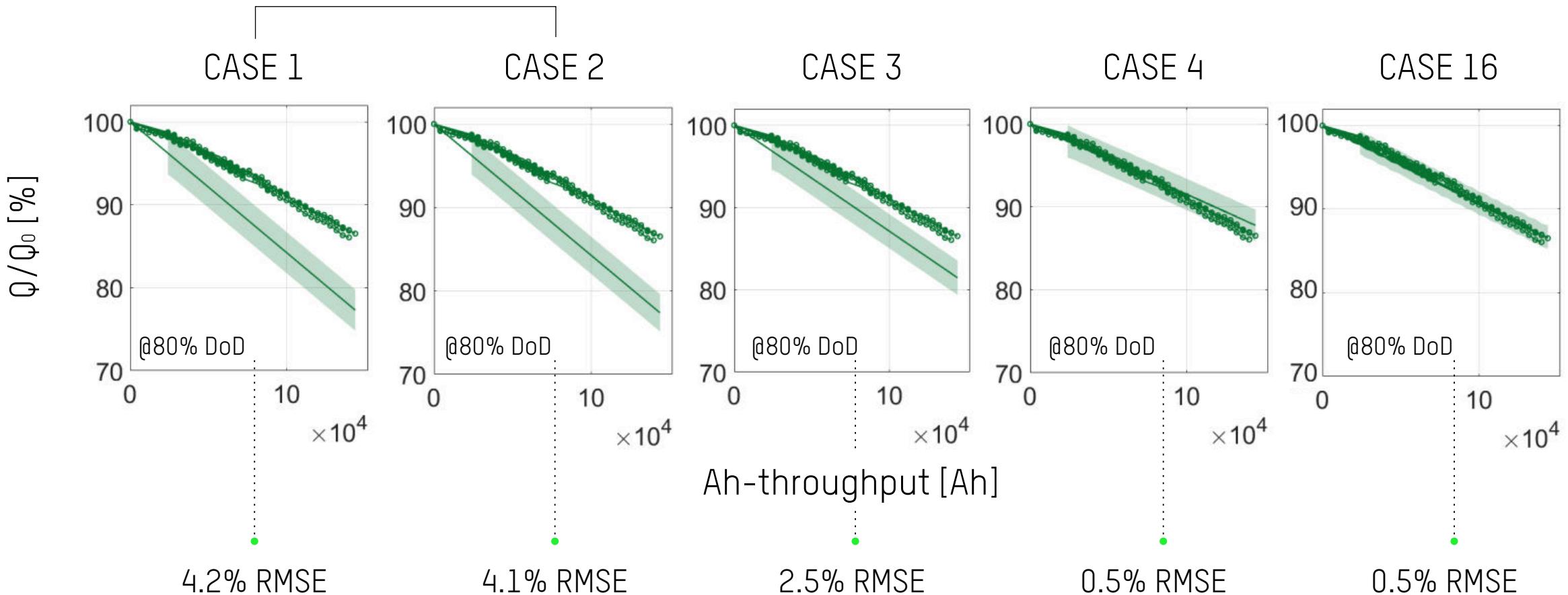
Modelling Li-ion battery ageing

- GOAL 1: Validation and learning from static conditions


Trained at: → 100% DoD → + 20% DoD

Modelling Li-ion battery ageing

- GOAL 1: Validation and learning from static conditions


Trained at: → 100% DoD → + 20% DoD → + 65% DoD

Modelling Li-ion battery ageing

- GOAL 1: Validation and learning from static conditions

Trained at: → 100% DoD → + 20% DoD → + 65% DoD → + 35,50,80% DoD

GOAL 1

- Quantify the minimum number of required training data
- **Learning from static** ageing conditions

GOAL 2

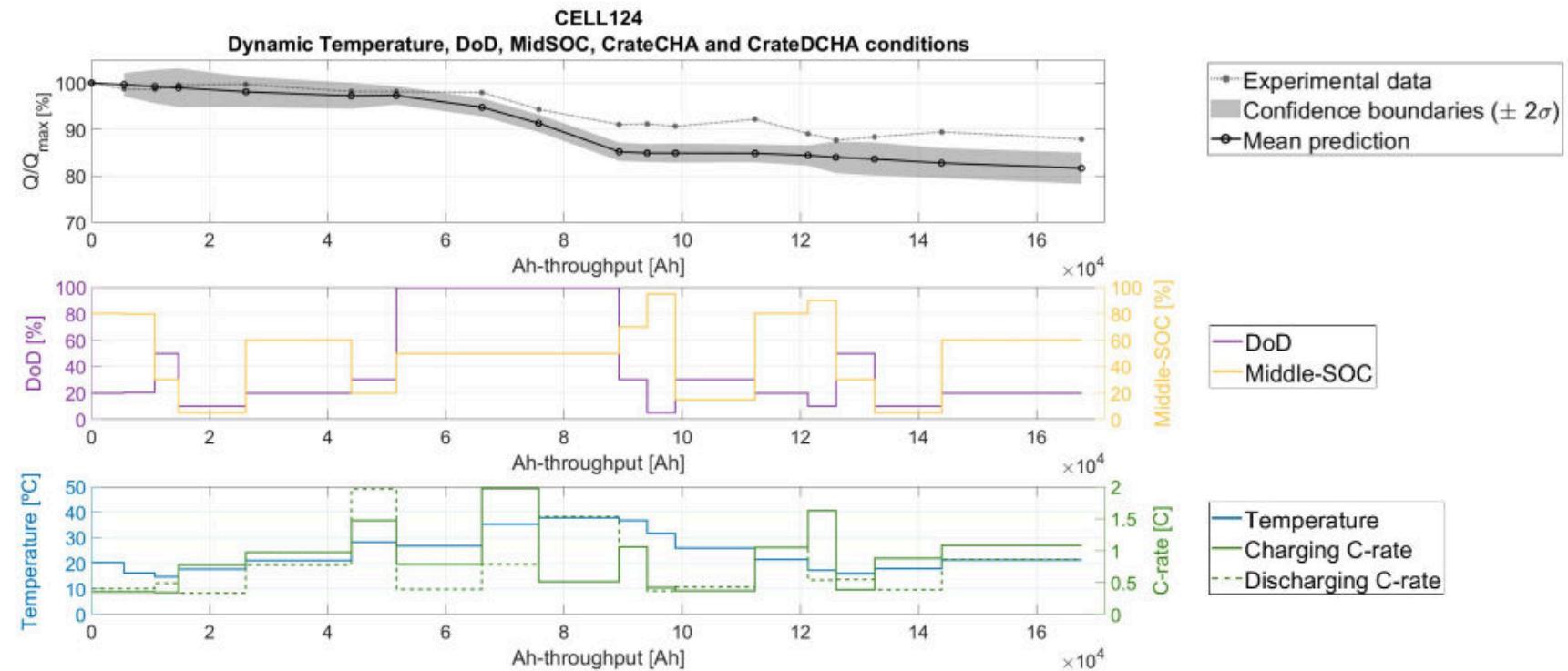
- Validation at dynamic ageing conditions
- Learning from dynamic ageing conditions

GOAL 1 ✓

- • Quantify the minimum number of required training data
- • **Learning from static** ageing conditions

GOAL 2

- • **Validation at dynamic** ageing conditions
- • **Learning from dynamic** ageing conditions

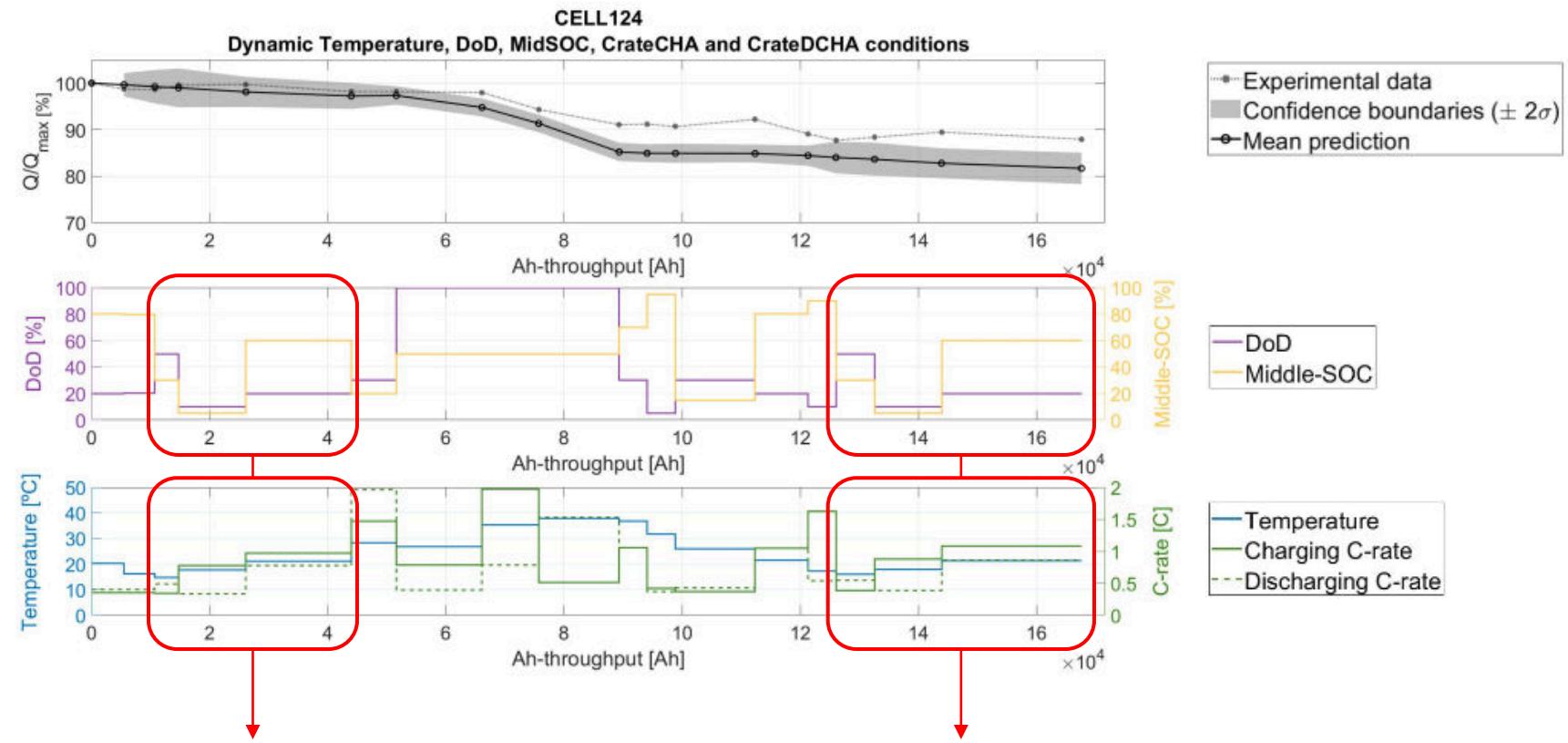

Modelling Li-ion battery ageing

- Goal 2: Validation at dynamic conditions

Training case 4

Initial model

..... ● RMSE = 4.2%


Modelling Li-ion battery ageing

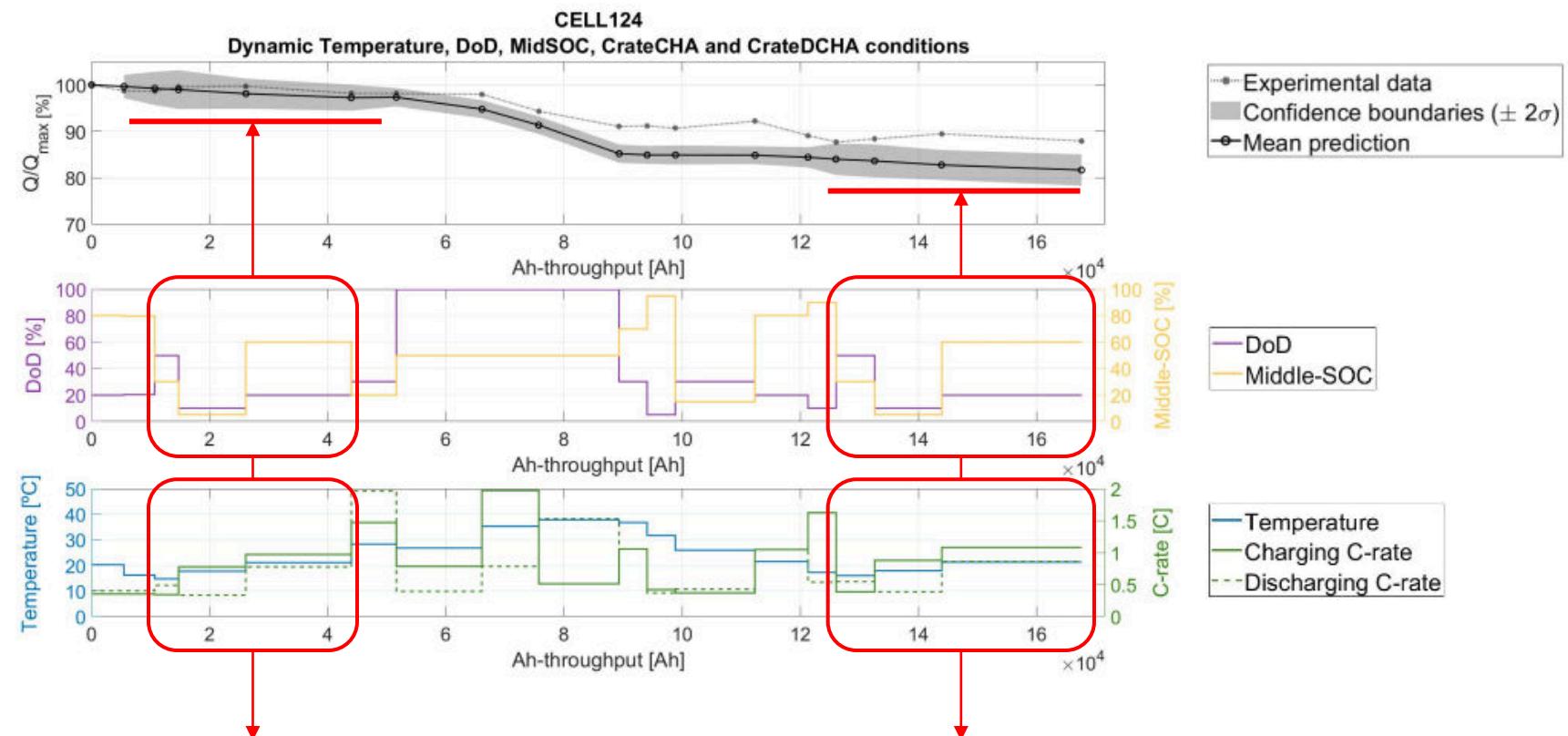
- Goal 2: Validation at dynamic conditions

Training case 4

Initial model

• RMSE = 4.2%

Unknown combination of stress-factors


Modelling Li-ion battery ageing

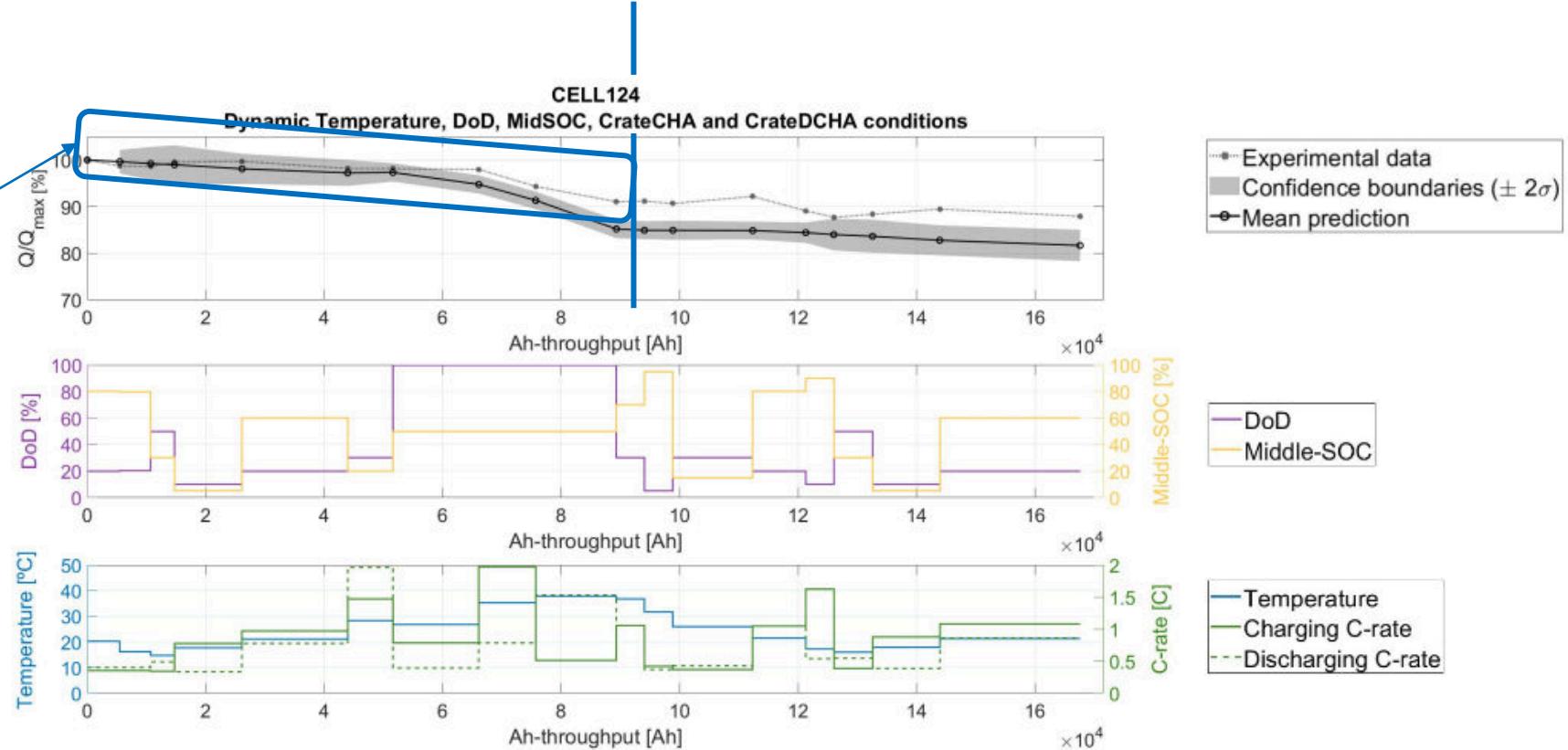
- Goal 2: Validation at dynamic conditions

Training case 4

Initial model

- RMSE = 4.2%

Unknown combination of stress-factors

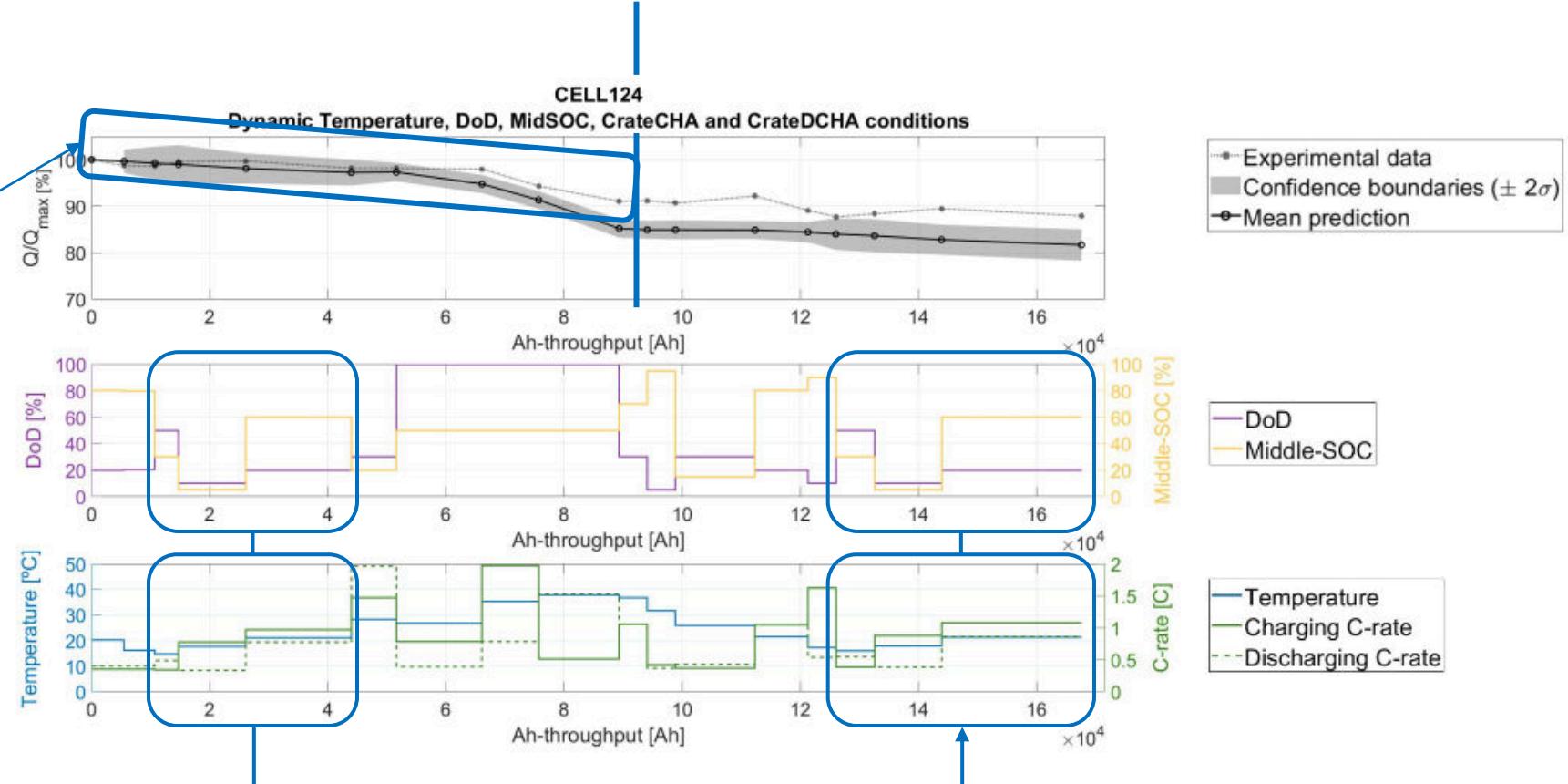

- Broader confidence boundaries

Modelling Li-ion battery ageing

- Goal 2: Learning from dynamic conditions

Training case 4

Incorporate in training data

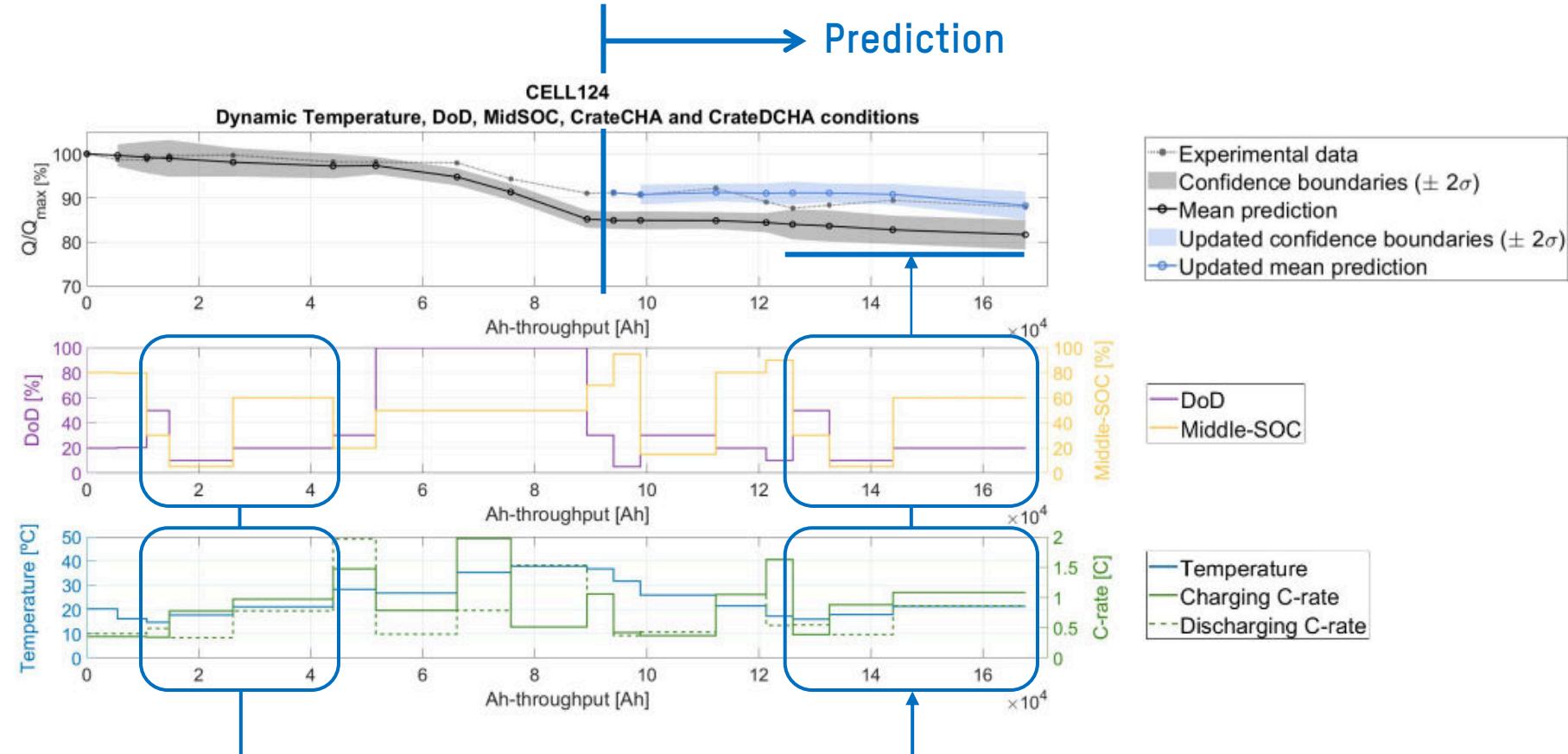


Modelling Li-ion battery ageing

- Goal 2: Learning from dynamic conditions

Training case 4

Incorporate in training data



Learning new operating conditions

Modelling Li-ion battery ageing

- Goal 2: Learning from dynamic conditions

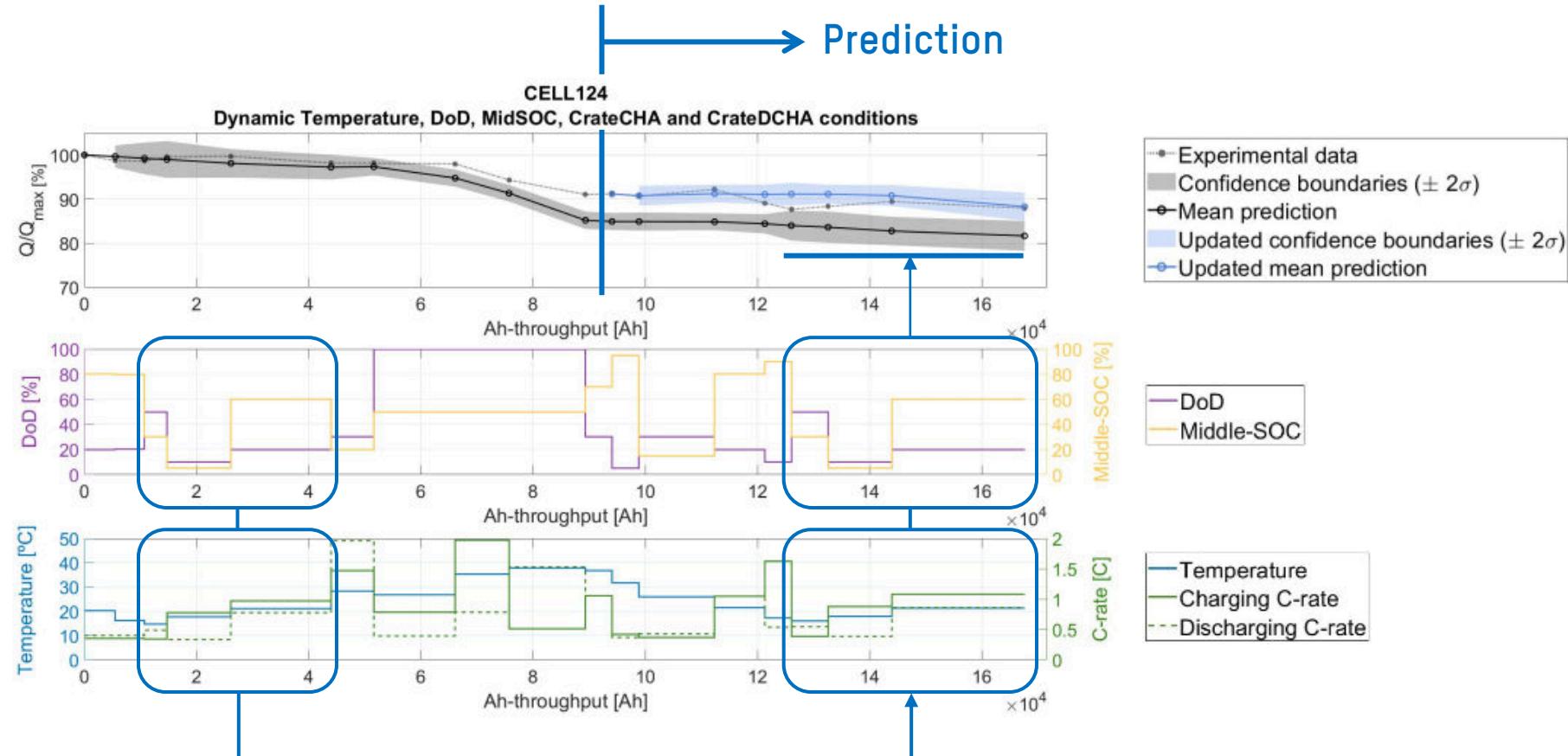
Training case 4

- Reduction of confidence boundaries

Modelling Li-ion battery ageing

- Goal 2: Learning from dynamic conditions

Training case 4


Errors from **updating point**:

Initial model

..... ● RMSE = 5.7%

Updated model

..... ● RMSE = 1.8%

Learning new operating conditions

- ● Reduction of confidence boundaries

GOAL 1

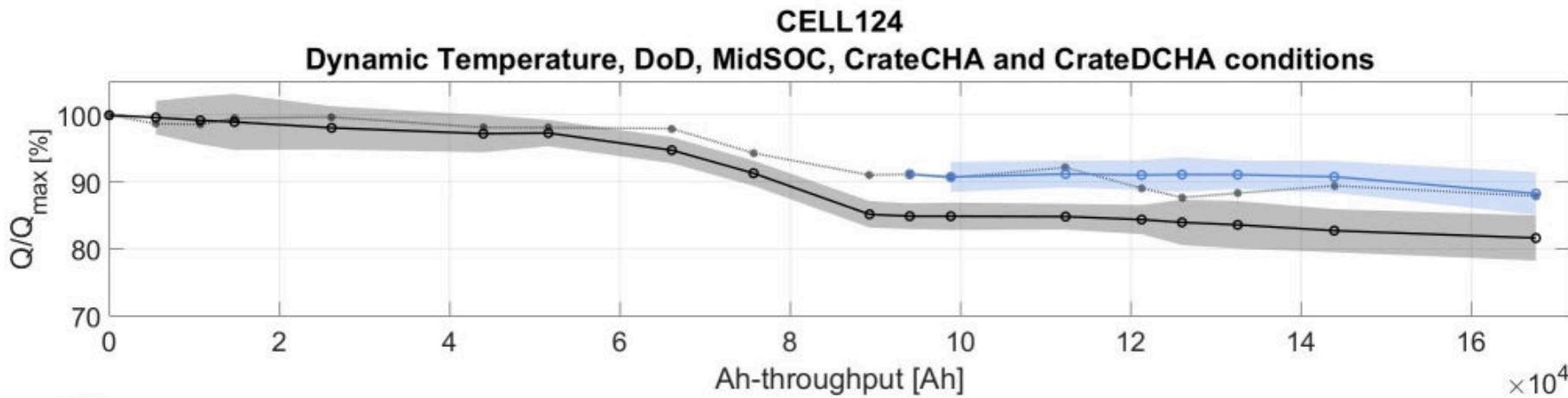
- Quantify the minimum number of required training data
- **Learning from static** ageing conditions

GOAL 2

- **Validation at dynamic** ageing conditions
- **Learning from dynamic** ageing conditions

Conclusions

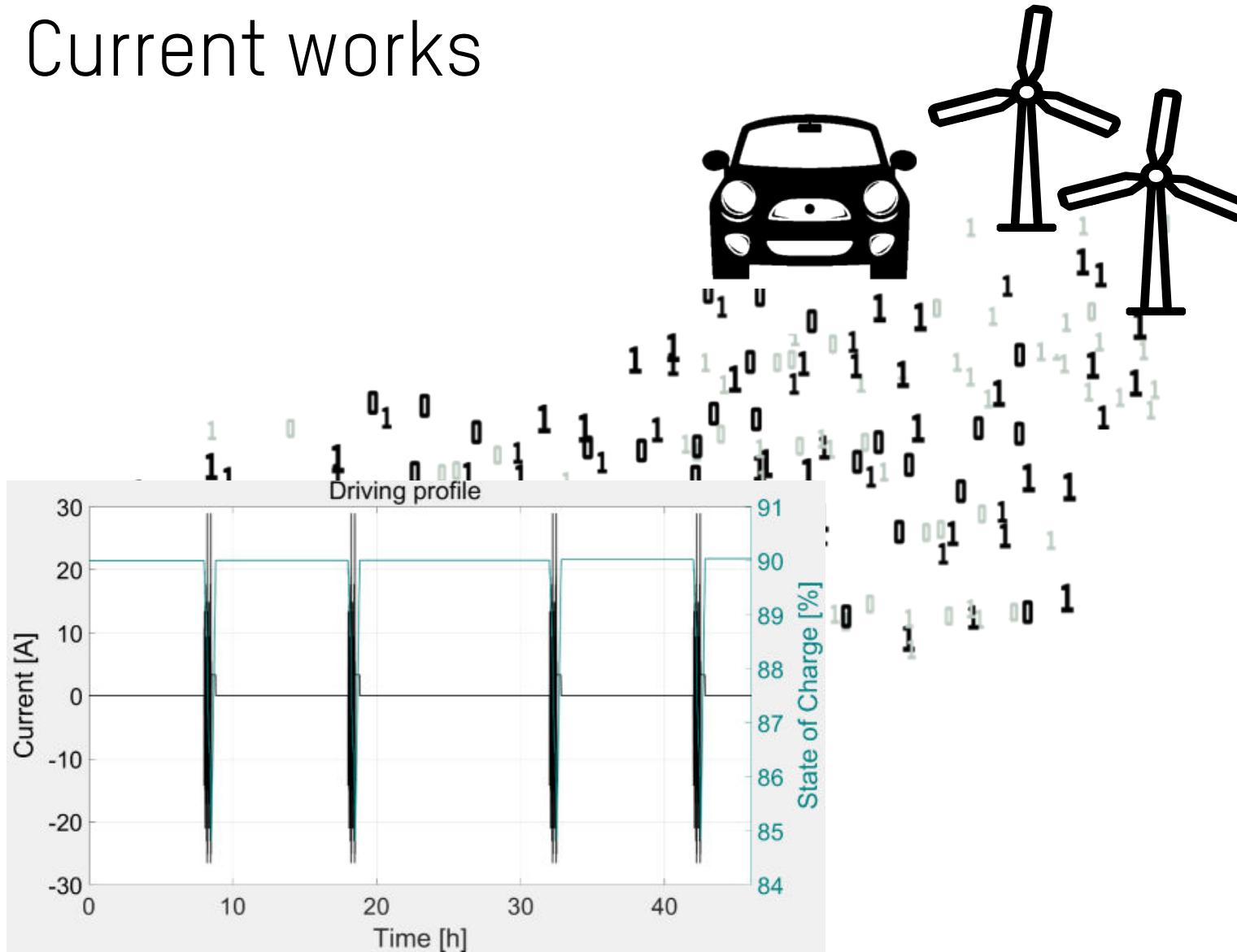
Accurate Gaussian Process model:

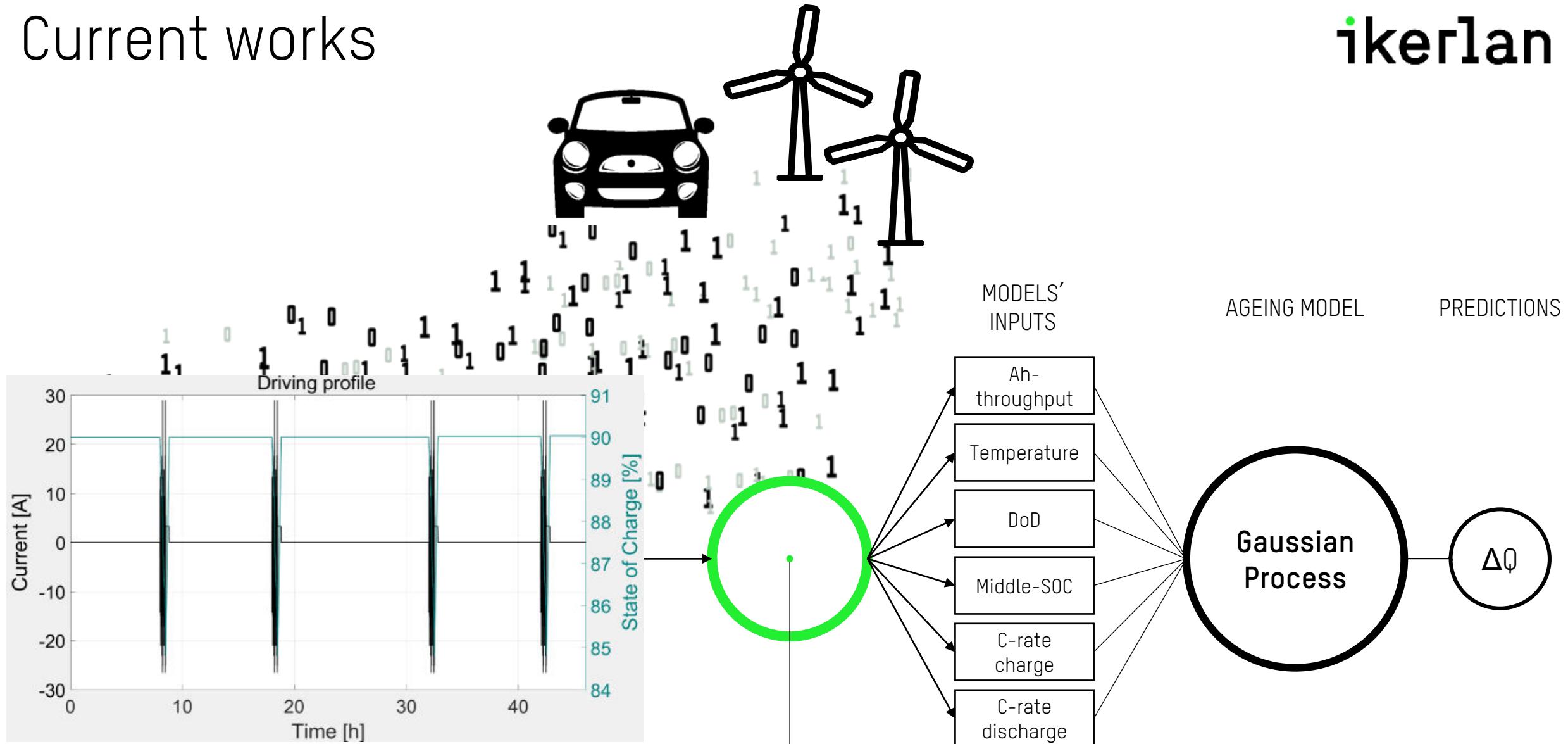

- Reduced laboratory training data (3 temperatures, 3 DODs)
- Large operating window of the model
- Validated at dynamic operating conditions

1.2% RMSE

OPERATING WINDOW

Temperature [25°C – 45°C]
DoD [10% – 100%]
Middle-SOC [20% – 80%]
Charging C-rate [C/3 – 2C]
Discharging C-rate [C/3 – 2C]


Conclusions



Able to **learn from new data**:

- Obtained from **static & dynamic** profiles
- Increasingly **accurate** and **confident** prediction
- Increasingly large **operating window** of the model

Current works

Profile conversion algorithm

Final words...

ikerlan

Laboratory data

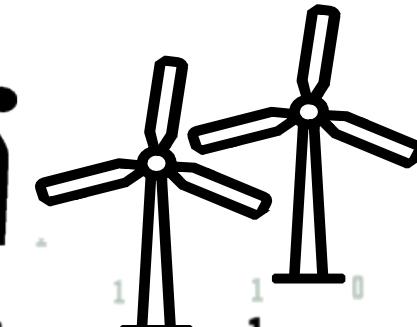
ikerlan

Data makes our models
strong...

Final words...

ikerlan

Laboratory data


ikerlan

Data makes our models
strong...

Real-world
data?

What about you?

Contact us

ikerlan

WHERE
TECHNOLOGY
IS AN ATTITUDE

Mattin Lucu

Energy Storage and Management

mlucu@ikerlan.es

+34 943 71 24 00

Pº J.M. Arizmendarrieta, 2
20500 Arrasate-Mondragón (Gipuzkoa)

ikerlan

WHERE
TECHNOLOGY
IS AN ATTITUDE

Milesker

Thank you
Merci

Previous works

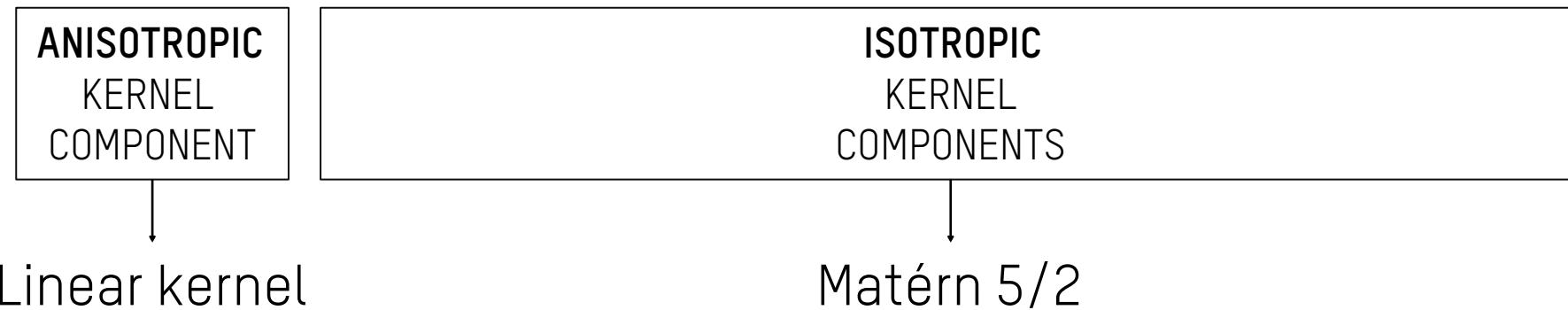
More details about related **previous** works:

- Lucu et al. – 2018 – A critical review on self-adaptive Li-ion battery ageing models
Journal of Power Sources - DOI / link: <https://doi.org/10.1016/j.jpowsour.2018.08.064>
- Lucu et al. – Under review – Journal of Power Sources
Data-driven calendar ageing model for NMC/graphite Lithium-ion battery: a nonparametric approach to learn from real-world operation data

Kernel composition

$$\kappa(\mathbf{x}, \mathbf{x}') = \kappa(\Delta Ah) \cdot \kappa(DOD) \cdot \kappa(MidSOC) \cdot \kappa(T) \cdot \kappa(CrateCHA) \cdot \kappa(CrateDCH)$$

- • One **kernel component** for each stress factor
- • **Tensor product**: assuming a **strong interaction** between input dimensions


Kernel composition

$$\kappa(\mathbf{x}, \mathbf{x}') = \kappa(\Delta Ah) \cdot \kappa(\text{DOD}) \cdot \kappa(\text{MidSOC}) \cdot \kappa(T) \cdot \kappa(\text{CrateCHA}) \cdot \kappa(\text{CrateDCH})$$

Non-limited range
(longterm prediction)

Conceptually limited range
[0% – 100%]

We assume a local modelling problem
e.g. [-30°C – +40°C]
e.g. Max 2C charge (datasheet 1C)
e.g. Max 10C discharge

